

Anchor Channels

Guide to ETA compatible Design

JORDAHL[®] Anchor Channels

Sample Calculation – Unreinforced Concrete

Example for Top Slab, Pair Load, Unreinforced; Slab Thickness h = 175 mm, Edge Distance $c_1 = 150$ mm

Given

- Concrete C30/37, f_{ck, cube} = 37 N/mm², uncracked
- Pair load, distance p = 100 mm

 $N_{Ed} = 1.35 \times 7.4 = 10.0 \text{ kN}$

 $V_{Ed} = 1.5 \times 12.0 = 18.0 \text{ kN}$ (For load factors see EN 1990, Annex A)

Channel profile: JTA W 40/22

Channel length: 350 mm Number of anchors: 3

Dead Load = 7.4 kN \rightarrow Design tension load

Wind Load = 12.0 kN

→ Design shear load

No supplementary reinforcement

 $V_{Ed} = 9.0 \text{ kN}$ $V_{Ed} = 9.0 \text{ kN}$ p = 100 mm h = 175 mm

 $N_{Ed} = 5.0 \text{ kN}$

 $N_{Fd} = 5.0 \text{ kN}$

From pages 16/17 the design resistance without

geometrical influence: N_{Rd} = V_{Rd} = 11.11 kN

Load Factors for Steel

Influence of channel length and load position:

steel: $S_N = 0.93$; $S_V = 0.93$

Pull-out resistance: 11.11 kN × 0.93 = **10.32 kN** Shear resistance: 11.11 kN × 0.93 = **10.32 kN**

Load Factors for Unreinforced Concrete

Influence of concrete and channel-geometry:

concrete: $C_N = 1.75$; $C_V = 1.60$;

Pull-out resistance: 11.11 kN × 1.75 = **19.44 kN** Shear resistance: 11.11 kN × 1.6 = **17.78 kN**

On page 26/27

Reduction factors for edge distance and member thickness/unreinforced concrete:

$\Psi_{\rm N,c_1} = 1.00$	
Ψ V,c ₁ = 0.61	

Example For Ordering a JORDAHL® Anchor Channel:

Туре	Size	Length	# /	Anchors	Material	ETA	Compliant
JTA W	40/22	350	-	3A	HDG	-	CE

1		Conc	rete				
ļ	Part	Channel	Min. Load	Strength	-Factors	Unrein Strength-	forced Factors ²⁾
į	Number	Length	Distance	Pull-out	Shear	Pull-out 4)	Shear 5)
i				S _N	Sv	C _{re,N}	C _{re,V}
1	JTA W 40/22-150-2A	150 mm			1.00	2.88	2.89
ĺ	JTA W 40/22-200-2A	200 mm		1.00		2.99	2.96
	JTA W 40/22-250-2A	250 mm	none	1.00 1.00	1.00	2.99	
[JTA W 40/22-300-2A	300 mm	l		2.82	2.99	
į	JTA W 40/22-250-3A	250 mm	·=· ·=· ·	1.00	1.00	1.61	1.53
	JTA W 40/22-300-3A	300 mm	100 mm	1.00	1.00	1.69	1.57
\geq !	JTA W 40/22-350-3A	350 mm		(0.93)	(0.93)	1.75	(1.60)
	JTA W 40/22-450-3A	450 mm		0.80	0.80	1.70	1.58

National	Top Slab or Member Thickness h								
	12	25	(17	75	200				
Edge Distance c1[mm]	${\displaystyle \stackrel{{\sf Pull-Out}}{\psi_{{\sf N},{\sf c}_1}}}$	$\begin{array}{c} \text{Shear} \\ \psi_{\text{V,c}_1} \end{array}$	${\displaystyle \begin{array}{c} {{ Pull-Out}} \ { \psi }_{{ N},{ c }_{1}} \end{array}}$	$\begin{array}{c} \textbf{Shear} \\ \psi_{\text{V},c_1} \end{array}$	$\underset{\psi_{N,c_1}}{Pull-Out}$	$\begin{array}{c} \text{Shear} \\ \psi_{\text{V,c}_1} \end{array}$			
50	0.58	0.19	0.58	0.21	0.58	0.21			
. 75	0.71	0.26	0.71	0.33	0.71	0.36			
400			1.22	1.44	1.22	1.54			
50	0.58	0.20	0.58	0.23	0.58	0.23			
75	0.71	0.27	0.71	0.34	0.71	0.37			
100	0.82	0.35	0.82	0.43	0.82	0.48			
(150)			1.00	0.61	1.00	0.63			
200	1.07	0.63	1.07	0.78	1.07	0.82			

Proofs for Steel and Concrete:

Steel: $\begin{array}{l} \underset{\text{Formula}}{\overset{\text{E}}{\text{S}_{\text{N},\text{S}}}} = \frac{N_{\text{Ed}}}{S_{\text{N}} \times 11.11 \text{ kN}} \\ = \frac{5.0 \text{ kN}}{0.93 \times 11.11 \text{ kN}} = \frac{5.0 \text{ kN}}{10.33 \text{ kN}} = 0.48 \le 1.0 \rightarrow \text{OK} \end{array}$ $\begin{array}{l} \underset{\text{Formula}}{\overset{\text{Formula}}{\text{S}_{\text{V},\text{S}}}} = \frac{V_{\text{Ed}}}{S_{\text{V}} \times 11.11 \text{ kN}} \\ = \frac{9.0 \text{ kN}}{0.93 \times 11.11 \text{ kN}} = \frac{9.0 \text{ kN}}{10.33 \text{ kN}} = 0.87 \le 1.0 \rightarrow \text{OK} \end{array}$

Unreinforced Concrete:

$$\beta_{N,c} = \frac{N_{Ed}}{\psi_{N,c_1} \times C_N \times 11.11 \text{ kN}}$$

$$= \frac{5.0 \text{ kN}}{1.00 \times 1.75 \times 11.11 \text{ kN}} = \frac{5.0 \text{ kN}}{19.44 \text{ kN}} = 0.26 \le 1.0 \rightarrow \text{OK}$$

$$\beta_{V,c} = \frac{V_{Ed}}{\psi_{V,c_1} \times C_V \times 11.11 \text{ kN}}$$

$$= \frac{9.0 \text{ kN}}{0.61 \times 1.60 \times 11.11 \text{ kN}} = \frac{9.0 \text{ kN}}{10.84 \text{ kN}} = 0.83 \le 1.0 \rightarrow \text{OK}$$

Combined Tension and Shear Interaction for Channel Profile:

T-Bolt: JC-M 12, Strength Grade 4.6 (T-Bolt Selection on Page 34)

 $N_{Ed} = 5.0 \text{ kN}; V_{Ed} = 9.0 \text{ kN}$ $N_{Rd} = 16.9 \text{ kN}; V_{Rd} = 12.1 \text{ kN}$

$$\beta_{N,sc} = \frac{N_{Ed}}{N_{Rd}} \le 1.0; \qquad \beta_{V,sc} = \frac{V_{Ed}}{V_{Rd}} \le 1.0;$$

$$\frac{5.0 \text{ kN}}{16.9 \text{ kN}} = 0.31 \le 1.0 \rightarrow \text{OK} \qquad \frac{9.0 \text{ kN}}{12.1 \text{ kN}} = 0.74 \le 1.0 \rightarrow \text{OK}$$

Combined Tension and Shear Interaction for T-Bolt:

$$\frac{0.0 \text{ KN}}{16.9 \text{ kN}} = 0.31 \le 1.0 \rightarrow \text{OK} \qquad \frac{0.0 \text{ KN}}{12.1 \text{ kN}} = 0.74 \le 1.0$$
$$\left(\frac{N_{\text{Ed}}}{N_{\text{Rd}}}\right)^2 + \left(\frac{V_{\text{Ed}}}{V_{\text{Rd}}}\right)^2 \le 1.0$$

$$\beta_{N,sc}^{2} + \beta_{V,sc}^{2} \le 1.0$$

5.0 kN λ^{2} / 9.0 kN λ^{2}

$$\frac{(10.0 \text{ kN})}{(10.9 \text{ kN})} + \left(\frac{(3.0 \text{ kN})}{(12.1 \text{ kN})}\right) \le 1.0$$
$$0.10 + 0.55 = 0.65 \le 1.0 \to \text{OK}$$

For Front-Face Example and Reinforced Concrete See Page 10-11.

JORDAHL[®] Anchor Channels Quality since 1907

JORDAHL[®] anchor channels are manufactured by Deutsche Kahneisen GmbH in Germany. The history of connecting steel to concrete begins in 1907 with an invention of Julius Kahn, member of a Chicago family of architects, whose "Kahn irons" opened up completely new possibilities for construction with reinforced concrete. In 1913 Anders Jordahl, a Norwegian engineer, who introduced Kahn's reinforcing technology in Germany, developed the Anchor Channel by designing a C-shaped profile which was used as reinforcement and connection device at the same time.

Today, with a century of experience in anchoring and connection technology "Deutsche Kahneisen GmbH" with its brand name JORDAHL® has developed into an internationally renowned company and a leader of research in anchoring technology, with a strong relationship to its customers.

JORDAHL® Products

- Quality made in Germany since 1907 and used in projects around the world
- State of the art and help customers build efficiently to maintain quality standards
- Made under strict quality control according to German and European approval requirements

- Eurocode compatible design & approved safety concept ETA-09/0338 et al.
- Comprehensive range of superior anchoring and connection products with accessories

ISO 9001 based internal QA / QC processes Whichever type of construction is in progress, JORDAHL[®] provides fully developed solutions in installation technology: for joining components to one another, for suspending loads or for connecting devices. Irrespective of the product application, quality and safety are fundamental to the selection of a connection system. JORDAHL[®] offers the following services:

- **Creative support** for planning and design
- Customized solutions and project-based consulting
- Cost effective planning and support with engineering calculations
- Excellent technical know-how from a team of experienced engineers
- Reliable partnership focusing on a long term customer relationship
- Just in time delivery onsite
- Boxed per floor on customer request

JORDAHL[®] Shipping Department, Berlin, Germany

36

38

40

42

44

46

48

Preface

This design guide was specifically developed to allow a quick assessment of load capacities in agreement with latest design methods according to CEN and ETA. All published data for JTA channels and bolts is based upon safe assessments according to CEN/TS 1992-4 and ETA 09/0338. All data relating to JXA, JGB, JTB and other products are based upon German technical approvals or standards.

Content

Sample Calculation – Unreinforced Concrete	1.1	Customized Solutions: Type JGB	31
Easy Anchoring in Concrete	4	Customized Solutions: Curved Anchor Channels	32
Curtain Wall	6	Customized Solutions: Anchor Channel Pairs and Corner Pieces	33
Other Applications	7		
Anchor Channel Overview	8	Design Resistance of JORDAHL® T-Bolts in Mild Steel	34
Sample Calculation – Reinforced Concrete	10	Design Resistance of JORDAHL® T-Bolts in Stainless Steel	36
JTA K 28/15	12		
ITA K 38/17	14	Prestressed Bolted Joints and	38
			50
JTA W 40/22	16	Recommended Tightening Torque	40
JTA W 50/30	18	Double Toothed T-Bolt	41
JTA W 53/34	20	Mounting Channels JM	42
JTA W 55/42	22	Mounting Channels: Cross Section	42
JTA W 72/48	24	Properties, clamping Plates	45
		JTB for Corrugated Metal Siding & Roofs	44
Ψ Edge Factors	26	Edge Spacing for ITR Channels	46
Ψ Corner Factors	27		40
		Corrosion Prevention	47
JORDAHL® Toothed Channels JXA and Toothed T-Bolts	28	Planning	48
	20		-10
Dynamic Load Capacity	29	Installation	49
JORDAHL [®] Cold Formed Anchor Channels	30	Safety of Design	50

© by Deutsche Kahneisen Gesellschaft mbH All rights reserved. We reserve the right to modifications within the framework of continued development concerning the product and application methods.

IORDAHL[®] Deutsche Kahneisen Gesellschaft mbH Nobelstraße 51 12057 Berlin, Germany

JORDAHL[®] Anchor Channels

Easy Anchoring in Concrete

JORDAHL[®] anchor channels are a superior connection system for transferring loads in reinforced and unreinforced concrete components. Anchor channels are cast into concrete and support static and dynamic loads. They are especially designed for highly reinforced and slender concrete parts.

- Anchoring without damaging the concrete structure & reinforcement
- Good integration into heavily reinforced components
- Suitable for pre-stressed and post-tensioned structures
- Increased load capacity near reinforcement
- High load capacity for static and dynamic loads
- Fatigue, seismic and blast load resistant
- **Time efficient** on-site installation

- Skilled labour not required for installation
- Installation with simple tools like hammer and wrench
- Small edge distances
- Easy to customize
- 7+ different sizes for the most economical solution
- Adjustable in three dimensions
- No damage of reinforcement and floor heating
- Reinforcement can be taken into account when planning

Our Support

Planning software to support structural engineers and technical assistance from internationally experienced engineers.

Greatest Safety Ensured

4

- Eurocode compatible design & approved safety concept: ETA-09/0338 et al.
- Installation without damaging the body of the structure
- Verified safety through building Approval of the products
- High load capacity even in delicate or highly reinforced components
- Independent of shrinkage and creep of the concrete component

- Suitable for installation in the compression and tension zone of the component
- Suitable for components with fire prevention requirements

No drilling no noise no dust no electrical tools required No welding no risk of fire no damage caused by sparks

Product Range

JORDAHL[®] offers a broad range of products:

- JTA, the standard anchor channel product group for tension, angled tension and shear load.
- JXA, the toothed channels accommodating loads in all directions.
- JGB, the anchor channels with welded rebar for installation in thin slabs.
- JORDAHL[®] T-bolts, available as hammer head, hook head and toothed bolts.
- JTB, the easy solution for corrugated metal siding and roof installation on concrete.
- JRA, the anchor channel with parallel welded rebar anchors for extremly high dynamic loads.

W-Profiles

Traditionally JORDAHL® profiles are hot rolled from a billet. Therefore they are particularly free of residual stresses. The geometry is optimized, well-suited for dynamic loads and high clamping forces from the T-bolts. Anchor channels made from hot rolled profiles are the preferred solution for curtain walls under high wind loads, elevators, heavy pipes under pre-stressed post-tensioned bridges, etc.

K-Profiles

The smaller JORDAHL® profiles are cold formed in a rolling mill which ensures dimensional consistency throughout the cross sectional area. Cold formed anchor channels can be used for connecting precast elements, taking the dead weight of facades or for attaching corrugated metal siding.

Steel grades

Most profiles are made from carbon steel material conforming to EN 10025 with a minimum yield strength of 235 N/mm². Stainless steel grade A4 conforming to EN 10088 is available upon request.

Round Anchors

Unless custom design is required, anchors are generally cold-headed in a fully automated and monitored production process.

Safety

work

Low cost

Simple to install

No risk of fire

JORDAHL[®] Anchor Channels Curtain Wall

Modern facade systems provide protection for occupants of office and apartment buildings, as well as the means for architects to create attractive buildings on the metropolitan skyline. Complete facade elements can be pre-configured in the factory and lifted with a crane into position. They can consist of glass, metal, concrete and natural stone elements. Intelligent solar power and air conditioning systems can even be integrated. Curtain wall systems guarantee superior quality, a safe working environment, and fast on-site installation.

JORDAHL[®] anchor channels for glass and metal facades are used to connect the longitudinal and transverse profiles of curtain wall systems and transfer the loads into the concrete structure. They are adaptable to suit any application and formatted in accordance with the design requirements. The various individual solutions are based on two basic principles:

- 1.A top of slab connection to transmit horizontal forces (from wind) and vertical forces (from dead load) and the resulting moments into the floor slab
- 2. Edge of slab connection to transmit the tensile forces (from wind) into the end of the floor slab

The Advantages

- Easy installation and adjustability of the connection system
- Installation close to the slab edge
- Secure transfer of vertical and horizontal loads even into thin floor slabs. Individual factored loads up to 55.6 kN possible
- Dynamic load bearing ability as a result of the use of hot rolled channel profiles with an approved fatigue resistance of 7.0 kN
- Easy incorporation of the installation system into the various possible floor types, such as in ribbed reinforced concrete slabs or thin floor slabs with corrugated metal decking
- Fast, cost-effective and secure installation on-site

Other Applications

Mounting Channel

Railing Anchored in a Thin Slab

Overhead Crane Rails

Water Pipeline and Other Supports

Concrete Precast Elements

Corrugated Metal Siding & Roofs

Industrial Machine Foundations

Overhead Electrical Lines

Stadium Seats

Brickwork Support

Lateral Brick Wall Support

Elevators

JORDAHL[®] Anchor Channels Anchor Channel Overview

T-Bolts

JA	JB	JB	JB	JC
M 20	M 16	M 10	M 10	M 10
M 24 M 27	M 20 M 24	M 12 M 16	M 12 M 16	M 12 M 16
M 30		M 20	M 20	

Material

- Zinc plated (ZP) or hot dipped galvanized (HDG) carbon steel
 Stainless steel (A4) available
 - on request

Hook Head T-Bolts and Hot Rolled Profile metric thread sizes

9

Guide to ETA compatible Design

JORDAHL[®] Anchor Channels

Sample Calculation – Reinforced Concrete

Example for Front Face Installation, Single Load, Additionally Reinforced; Component Depth – Thickness \ge 1800 mm, Edge Distance $c_1 = 100$ mm

Given:

- Concrete C30/37, f_{ck, cube} = 37 N/mm², cracked
- Single load, at any point of the channel
- Supplementary reinforcement, stirrups Ø 10/75 mm, located in the area of the JORDAHL[®] anchor channel

Wind Load = 8.0 kN \rightarrow Design tensile load N_{Ed} = 1.5 × 8.0 = 12.0 kN Dead Load = 5.0 kN \rightarrow Design shear load V_{Ed} = 1.35 × 5.0 = 6.75 kN (For load factors see EN 1990, Annex A)

Channel profile: JTA W 50/30 Channel length: 150 mm Number of anchors: 2

From pages 18/19 the design resistance without geometrical influence:

 $N_{Rd} = V_{Rd} = 17.22 \text{ kN}$

Load Factors for steel

Influence of channel length and load position:

Steel: $S_N = 1.00$; $S_V = 1.00$

Pull-out resistance: 17.22 kN × 1.00 = **17.22 kN** Shear resistance: 17.22 kN × 1.00 = **17.22 kN**

Load Factors for Reinforced Concrete

Influence of concrete and channel-geometry:

concrete: $C_N = 2.23$; $C_V = 2.46$ crackfactor tension: 1/1.4 = 0.71crackfactor shear: 1/1.33 = 0.75

Pull-out resistance: 17.22 kN × 2.23 × 0.71 = **27.26 kN** Shear resistance: 17.22 kN × 2.46 × 0.75 = **31.77 kN**

On page 26/27

Reduction factors for edge distance and member thickness/reinforced concrete:

Example for Ordering a JORDAHL[®] Anchor Channel:

Туре	Size	Length	# /	Anchors	Material	ET/	A Compliant
JTA W	50/30	150	-	2A	HDG	-	CE

				Ste	el*	Conc	rete	
	Deat		Min Load	Strongth Factors		Reinforced		
	Fait	Number Length Distance		Streng		Strength	th-Factors 2)	
	Nulliber		Distance	Pull-out	Shear	Pull-out 4)	Shear 5)	
			S _N	S _v	C _{re.N}	C _{re.V}		
	JTA W 50/30-150-2A	150 mm				2.23	2.46	
	JTA W 50/30-150-2A	200 mm	1	1.00	1.00	2.31	3.04	
	JTA W 50/30-250-2A	250 mm	none			2.36	3.04	
	JTA W 50/30-300-2A	300 mm	l			2.36	3.52	
	JTA W 50/30-300-3A	300 mm	100 mm	1.00	1.00	1.24	1.35	
	JTA W 50/30-350-3A	350 mm		0.95	0.95	1.33	1.99	
	JTA W 50/30-450-3A	450 mm		0.82	0.82	1.32	1.98	

Next							-		
		Top Sl							
	12	25	17	175		175 200 1		(10	00
Edge Distance c1[mm]	${\displaystyle \stackrel{{\sf Pull-Out}}{\psi_{{\sf N},{\sf c}_1}}}$	$\underset{\psi_{\text{V,c}_1}}{\text{Shear}}$	$\mathfrak{Pull-Out}_{\psi_{N,c_1}}$	$\underset{\psi_{\text{V,c}_1}}{\text{Shear}}$	${\displaystyle \stackrel{{\sf Pull-Out}}{\psi_{{\sf N},{\sf c}_1}}}$	$\begin{array}{c} \textbf{Shear} \\ \psi_{\text{V,c}_1} \end{array}$	Pull-Out Ψ _{N,c,re1}	$\underset{\psi_{\text{V,c,re}_1}}{\textbf{Shear}}$	
75	0.48	0.32	0.48	0.36	0.48	0.37	0.48	0.37	
(100)							K 82	(65)	
150	1.00	0.84	1.00	0.86	1.00	0.85	1.00	1.00	
200	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	
300			1.00	0.68	1.00	0.68	1.00	0.88	

Proofs for Steel and Concrete:

Steel: $\beta_{N,s} = \frac{N_{Ed}}{S_N \times 17.22 \text{ kN}}$ $=\frac{12.0 \text{ kN}}{1.00 \times 17.22 \text{ kN}} = \frac{12.0 \text{ kN}}{17.22 \text{ kN}} = 0.70 = \le 1.0 \rightarrow \text{OK}$ $\beta_{V,s} = \frac{V_{Ed}}{S_{V} \times 17.22 \text{ kN}}$ Shear $\frac{6.75 \text{ kN}}{1.00 \times 17.22 \text{ kN}} = \frac{6.75 \text{ kN}}{17.22 \text{ kN}} = 0.39 \le 1.0 \rightarrow \text{OK}$

$$\begin{array}{l} \textbf{Reinforced Concrete:} \\ \beta_{N,c} = \frac{N_{Ed}}{\psi_{N,c_1} \times C_N \times 0.71 \times 17.22 \text{ kN}} \\ = \frac{12.0 \text{ kN}}{0.82 \times 2.23 \times 0.71 \times 17.22 \text{ KN}} = \frac{12.0 \text{ kN}}{22.36 \text{ kN}} = 0.54 \le 1.0 \rightarrow \text{OK} \\ \beta_{V,c} = \frac{V_{Ed}}{\psi_{V,c,re_1} \times C_V \times 0.75 \times 17.22 \text{ kN}} \\ = \frac{6.75 \text{ kN}}{0.65 \times 2.46 \times 0.75 \times 17.22 \text{ kN}} = \frac{6.75 \text{ kN}}{20.65 \text{ kN}} = 0.33 \le 1.0 \rightarrow \text{OK} \end{array}$$

Combined Tension and Shear Interaction for Channel Profile:

$$\left(\frac{N_{Ed}}{\Psi_{N,c_{1}} \times C_{N} \times 0.71 \times 17.22 \text{ kN}}\right)^{1} + \left(\frac{V_{Ed}}{\Psi_{V,c_{1}} \times C_{V} \times 0.75 \times 17.22 \text{ kN}}\right)^{1} \le 1.0$$

$$\beta_{N,c}^{-1} + \beta_{V,c}^{-1} \le 1.0$$

$$0.54^{1} + 0.33^{1} \le 1.0$$

$$0.54 + 0.33 = 0.87 \le 1.0 \rightarrow \text{OK}$$

$$\boxed{25}_{0} \xrightarrow{\text{Design Resistance Concrete}}_{0 \text{ Design Load}}$$

$$\frac{25}{0} \xrightarrow{0}_{0} \xrightarrow{5}_{0} 10 \xrightarrow{15}_{0} 20 \xrightarrow{25}_{0} \underbrace{25}_{V_{Rd} \text{ Shear Resistance}}$$

T-Bolt: JB-M 16, Strength Grade 4.6 (T-Bolt Selection on Page 34)

 $N_{Ed}\,{=}\,12.0$ kN; $V_{Ed}\,{=}\,6.75$ kN $N_{Rd} = 31.4 \text{ kN}; V_{Rd} = 22.6 \text{ kN}$

$$\beta_{N,sc} = \frac{N_{Ed}}{N_{Rd}} \le 1.0; \qquad \beta_{V,sc} = \frac{V_{Ed}}{V_{Rd}} \le 1.0;$$
$$\frac{12.0 \text{ kN}}{31.4 \text{ kN}} = 0.38 \le 1.0 \rightarrow \text{OK} \quad \frac{6.75 \text{ kN}}{22.6 \text{ kN}} = 0.30 \le 1.0 \rightarrow \text{OK}$$

Combined Tension and Shear Interaction for T-Bolt:

$$\left(\frac{N_{Ed}}{N_{Rd}}\right)^2 + \left(\frac{V_{Ed}}{V_{Rd}}\right)^2 \le 1.0$$

$$\beta_{N,sc}^2 + \beta_{V,sc}^2 \le 1.0$$

$$\left(\frac{12.0 \text{ kN}}{31.4 \text{ kN}}\right)^2 + \left(\frac{6.75 \text{ kN}}{22.6 \text{ kN}}\right)^2 \le 1.0$$

$$0.14 + 0.09 = 0.23 \le 1.0 \rightarrow \text{OK}$$

For Top-Slap Example and Unreinforced Concrete See Page 1.2–1.3.

JORDAHL[®] Anchor Channels and T-Bolts JTA K 28/15

JTA K 28/15 – JD Bolts JTA K 38/17 – JH Bolts

JTA W 40/22 – JC Bolts JTA W 50/30 – JB Bolts JTA W 53/34 – JB Bolts JTA W 55/42 – JB Bolts JTA W 72/48 – JA Bolts

Design Resistance:

 $N_{Rd} = V_{Rd} = 5.0 \text{ kN}^{(1) (7)}$

The Following Partial Safety Factors are Included: Steel: $\gamma_{Ms}=1.8$ Concrete: $\gamma_{Mc}=1.5$

The Following Equations Must be Checked:

Steel:

$$\beta_{N,s} = \frac{N_{Ed}}{S_N \times 5.0 \text{ kN}} \le 1.0;$$

 $\beta_{V,s} = \frac{V_{Ed}}{S_V \times 5.0 \text{ kN}} \le 1.0$ $\beta_{N,s}^{2} + \beta_{V,s}^{2} \le 1.0$

$$\begin{split} & \text{Concrete Unreinforced:} \\ & \beta_{\text{N,c}} = \frac{N_{\text{Ed}}}{\psi_{\text{N,c}_{1}} \times C_{\text{N}} \times 5.0 \text{ kN}} \leq 1.0; \\ & \beta_{\text{V,c}} = \frac{V_{\text{Ed}}}{\psi_{\text{V,c}_{1}} \times C_{\text{V}} \times 5.0 \text{ kN}} \leq 1.0 \\ \end{split}$$

Example for Ordering a JORDAHL® Anchor Channel:

Туре	Size	Length	# A	nchors	Material	ETA (Compliant
JTA K	28/15	- 150	-	2A	HDG	-	CE

Load Configuration ³⁾				Ste	eel*
For Top-Slab and Front-Face Concrete = C 30 / 37 Member Thickness = 1000 mm	Part Number	Channel Length	Min. Load Distance	Strength-Factors	
Edge Distance $c_1 = 150 \text{ mm}$ Resistance Given per Load Point				Pull-out S _N	Shear S _v
Single Load 2A V _{Ed} N _{Ed}	JTA K 28/15–150–2A	150 mm		1.00	1.00
	JTA K 28/15-200-2A	200 mm	none	1.00	1.00
	JTA K 28/15-250-2A	250 mm		1.00	1.00
Pair Load	JTA K 28/15–150–2A	150 mm		1.00	1.00
	JTA K 28/15-200-2A	200 mm	100 mm	0.87	0.87
V _{Ed} N _{Ed}	JTA K 28/15-250-2A	250 mm		0.78	0.78
Pair Load	JTA K 28/15-250-3A	250 mm		1.00	1.00
JA Jan	JTA K 28/15-300-3A	300 mm	100 mm	0.99	0.99
V _{Ed} N _{Ed}	JTA K 28/15-450-3A	450 mm		0.78	0.78
Continuous Load	JTA K 28/15-650-4A	650 mm	200 mm	0.96	0.96
V _{Ed} N _{Ed}	JTA W K 28/15-6000-31A	6000 – 6050 mm	200 mm	0.96	0.96

Minimum of steel or concrete resistance governs.

JD Bolts

T-Bolt Selection Chart

For stainless steel bolts see page 36/37.

Metric Thread		Type JD					
Size ∅ [mm]	M 6	M 8	M 10	M 12			
Strength Grade		4.	.6				
Tension Load N _{Rd} [kN]	4.0	7.3	11.6	16.9			
Shear Load V _{Rd} [kN]	2.9	5.3	8.4	12.1			

Minimum Bolt Length:

- Add clamping length l_k
 - *plus* bolt diameter $d = \emptyset$
 - *plus* profile lip f
 - plus 3 mm
- Select next longer length from the T-bolt selection chart

Bolt capacity may be limited by anchor channel capacity. Check combined loads using:

$$\begin{split} \beta_{\text{N,sc}} &= \frac{\text{N}_{\text{Ed}}}{\text{N}_{\text{Rd}}} \leq \ 1.0 \\ \beta_{\text{V,sc}} &= \frac{\text{V}_{\text{Ed}}}{\text{V}_{\text{Rd}}} \leq \ 1.0 \end{split}$$

$$\beta_{N,sc}^{2} + \beta_{V,sc}^{2} \le 1.0$$

Example for Ordering a JORDAHL® Bolt Type JD:

Туре	Diameter	L	ength [mm]		Strength		Coating
JD	M 10	×	40	_	4.6	_	ZP

Notes on Anchor Channels

- Load values are design resistances. They are valid for mild and stainless steel. For permissible loads divide by 1.4 load safety factor.
- Concrete strength is C 30 / 37. Resistance of unreinforced concrete may be adjusted for values between C 20 / 25 and C 50 / 60 by multiplying concrete strength by the factor below:

 $\sqrt{\frac{f_{ck, cube project}}{37 \text{ N/mm}^2}}$

- Loads can be positioned anywhere on the channel. Allow for 25 mm distance from the bolt center to the end of the profile.
- Valid for uncracked concrete. For cracked concrete divide by 1.40.
- 5) Valid for uncracked concrete. For cracked concrete divide by 1.33.
- 6) When using rebar configuration according to CEN/TS 1992-4 shear resistance in cracked concrete can be improved up to the resistance of uncracked concrete.
- The information given is intended to be used in conjunction with the design criteria of CEN/TS 1992-4 and factored loads according to EN 1990.
 > Transmission of forces in the structure must be considered in the design.
- 8) Min. member thickness incl. 25 mm concrete cover over the anchor.
- S_N, S_V: steel strength reduction factor for channel length and load spacing
- ** C_N, C_V: concrete strength correction factor for channel length and load configuration

Concre	ete**								
Unrein	forced								
Strength-	Strength-Factors 2)								
Pull-out ⁴⁾ C _N	Shear ^{5) 6)} C _V								
2.94	5.35								
3.05	5.45								
3.01	5.47								
1.68	2.79								
1.81	2.88								
1.82	2.93								
1.78	2.84								
1.89	2.90								
1.82	2.93								
2.16	2.35								
2.14	1.84								

 $\Psi_{N,c_1} = \psi_{V,c_1} = 1$ for concrete member thickness & edge distance shown above. For other dimensions and top-slab application see page 26/27.

JORDAHL[®] Anchor Channels and T-Bolts JTA K 38/17

JTA K 28/15 – JD Bolts JTA K 38/17 – JH Bolts JTA W 40/22 – JC Bolts JTA W 50/30 – JB Bolts JTA W 53/34 – JB Bolts JTA W 55/42 – JB Bolts JTA W 72/48 – JA Bolts

Design Resistance:

$$N_{Rd} = V_{Rd} = 10.0 \text{ kN}^{-1/8}$$

The Following Partial Safety Factors are Included: Steel: γ_{Ms} = 1.8

Concrete: $\gamma_{Mc} = 1.5$; Reinforcement: $\gamma_{Ms, re} = 1.15$ Use either interaction for unreinforced or reinforced concrete.

The Following Equations Must be Checked:

Steel:

$$\beta_{N,s} = \frac{N_{Ed}}{S_N \times 10.0 \text{ kN}} \le 1.0;$$

 $\beta_{V,s} = \frac{V_{Ed}}{S_V \times 10.0 \text{ kN}} \le 1.0$ $\beta_{N,s}^2 + \beta_{V,s}^2 \le 1.0$

$$\beta_{N,c} = \frac{N_{Ed}}{\psi_{N,c_1} \times C_N \times 10.0 \text{ kN}} \le 1.0;$$

$$\beta_{V,c} = \frac{V_{Ed}}{\psi_{V,c_1} \times C_V \times 10.0 \text{ kN}} \le 1.0 \qquad \beta_{N,c}^{-1.5} + \beta_{V,c}^{-1.5} \le 1.0$$

Concrete Reinforced (\varnothing 10/75 mm):

.....

$$\beta_{N,c,re} = \frac{N_{Ed}}{\psi_{N,c,re_{1}} \times C_{re,N} \times 10.0 \text{ kN}} \le 1.0;$$

$$\beta_{V,c,re} = \frac{V_{Ed}}{\psi_{V,c,re_{1}} \times C_{re,V} \times 10.0 \text{ kN}} \le 1.0 \quad \beta_{N,c,re}^{-1} + \beta_{V,c,re}^{-1} \le 1.0$$

Example for Ordering a JORDAHL® Anchor Channel:

Туре	Size	Length	# A	nchors	Material	ETA C	Compliant	
ITA K	38/17	- 150	-	2A	HDG	_	CE	

Load Configuration ³⁾				Ste	el*	
For Top-Slab and Front-Face Concrete = C 30 / 37 Member Thickness = 1000 mm	Part Number	Channel Length	Min. Load Distance	Strength-Factors		
Edge Distance c ₁ = 150 mm Resistance Given per Load Point				Pull-out S _N	Shear S _V	
Single Load	JTA K 38/17-150-2A	150 mm		1.00	1.00	
	JTA K 38/17-200-2A	200 mm	none	1.00	1.00	
V _{Ed} N _{Ed}	JTA K 38/17-250-2A	250 mm		1.00	1.00	
Pair Load	JTA K 38/17-150-2A	150 mm		1.00	1.00	
	JTA K 38/17-200-2A	200 mm	100 mm	0.88	0.88	
V _{Ed} N _{Ed}	JTA K 38/17-250-2A	250 mm		0.79	0.79	
Pair Load	JTA K 38/17-250-3A	250 mm		1.00	1.00	
3A	JTA K 38/17-300-3A	300 mm	100 mm	1.00	1.00	
V _{Ed} N _{Ed}	JTA K 38/17-450-3A	450 mm		0.79	0.79	
Continuous Load	JTA K 38/17-650-4A	650 mm	200 mm	0.96	0.96	
V _{Ed} N _{Ed}	JTA K 38/17-6000-31A	6000–6050 mm	200 mm	0.96	0.96	

Minimum of steel or concrete resistance governs.

JH Bolts

T-Bolt Selection Chart

For stainless steel bolts see page 36/37.

Metric Thread	Туре ЈН						
Size ∅ [mm]	M 10	M 12	M 12	M 16			
Strength Grade	4.6	4.6	8.8	4.6			
Tension Load N _{Rd} [kN]	11.6	16.9	44.9	31.4			
Shear Load V _{Rd} [kN]	8.4	12.1	27.0	22.6			

Minimum Bolt Length:

- Add clamping length l_k
 - *plus* bolt diameter $d = \emptyset$
 - *plus* profile lip f
- *plus* 3 mm
- Select next larger length from the T-bolt selection chart

Bolt capacity may be limited by anchor channel capacity. Check combined loads using:

$$\beta_{\text{N,sc}} = \frac{\text{N}_{\text{Ed}}}{\text{N}_{\text{Rd}}} \le 1.0$$

$$\beta_{V,sc} = \frac{V_{Ed}}{V_{Rd}} \le 1.0$$

$$\beta_{\rm N,sc}^{2} + \beta_{\rm V,sc}^{2} \le 1.0$$

Example for Ordering a JORDAHL® Bolt Type JH:

Туре	Diameter	L	ength [mm]	9	Strength		Coating
JH	M 12	×	50	-	4.6	-	ZP

Concre	ete**	Concrete***				
Unreinf	orced		Reinforced			
Strength-	Factors ²⁾	Reinforced 7)	Strength-Factors ²⁾		Length	
Pull-out ⁴⁾ C _N	Shear ^{5) 6)} C _V	Concrete	Pull-out ⁴⁾ C _{re,N}	Shear ⁵⁾ C _{re,V}		
3.05	3.21	arnothing 10 / 75 mm	2.68	4.02	150 mm	
3.15	3.27		2.77	4.16	200 mm	
3.18	3.30		2.80	4.20	250 mm	
1.65	1.67		1.45	2.18	150 mm	
1.75	1.72	с ×	1.54	2.31	200 mm	
1.80	1.75		1.58	2.38	250 mm	
1.71	1.70		1.51	2.26	250 mm	
1.79	1.74		1.58	2.31	300 mm	
1.80	1.75	0 × 77.1	1.58	2.38	450 mm	
1.73	1.39		1.53	2.29	650 mm	
1.68	1.07	The second secon	1.48	2.21	6000 – 6050 mm	

 $\Psi_{N,c_1} = \psi_{V,c_1} = 1$ for concrete member thickness & edge distance shown above. For other dimensions and top-slab application see page 26/27.

- Load values are design resistances. They are valid for mild and stainless steel. For permissible loads divide by 1.4 load safety factor.
- Concrete strength is

 30/37. Resistance of
 unreinforced concrete may
 be adjusted for values
 between C 20/25 and
 C 50/60 by multiplying
 concrete strength by the
 factor below:

- Loads can be positioned anywhere on the channel. Allow for 25 mm distance from the bolt center to the end of the profile.
- Valid for uncracked concrete. For cracked concrete divide by 1.40.
- 5) Valid for uncracked concrete. For cracked concrete divide by 1.33.
- 6) When using rebar configuration according to CEN/TS 1992-4 shear resistance in cracked concrete can be improved up to the resistance of uncracked concrete.
- Rebar configuration based upon a conservative assessment. Project specific design may be able to save rebar content. For front face installation stirrups are recommended.
- The information given is intended to be used in conjunction with the design criteria of CEN/TS 1992-4 and factored loads according to EN 1990.
 Transmission of forces in the structure must be considered in the design.
- Min. member thickness incl. 25 mm concrete cover over the anchor.
- S_N, S_V: steel strength reduction factor for channel length and load spacing
- ** C_N, C_V: concrete strength correction factor for channel length and load configuration
- *** C_{re,N}, C_{re,V}: correction factor for channel length and load configuration in reinforced concrete

JORDAHL[®] Anchor Channels and T-Bolts JTA W 40/22

JTA K 28/15 – JD Bolts JTA K 38/17 – JH Bolts JTA W 40/22 – JC Bolts JTA W 50/30 – JB Bolts JTA W 53/34 – JB Bolts JTA W 55/42 – JB Bolts JTA W 72/48 – JA Bolts

Design Resistance:

$$N_{Rd} = V_{Rd} = 11.1 \text{ kN}^{(1)(8)}$$

The Following Partial Safety Factors are Included: Steel: γ_{Ms} = 1.8

Concrete: $\gamma_{Mc} = 1.5$; Reinforcement: $\gamma_{Ms, re} = 1.15$ Use either interaction for unreinforced or reinforced concrete.

The Following Equations Must be Checked:

Steel:

$$\beta_{N,s} = \frac{N_{Ed}}{S_N \times 11.1 \text{ kN}} \le 1.0;$$

$$\beta_{V,s} = \frac{V_{Ed}}{S_V \times 11.1 \text{ kN}} \le 1.0 \qquad \beta_{N,s}^2 + \beta_{V,s}^2 \le 1.0$$

$$\begin{split} \beta_{N,c} &= \frac{N_{Ed}}{\psi_{N,c_1} \times C_N \times 11.1 \text{ kN}} \leq 1.0 \text{ ;} \\ \beta_{V,c} &= \frac{V_{Ed}}{\psi_{V,c_1} \times C_V \times 11.1 \text{ kN}} \leq 1.0 \qquad \qquad \beta_{N,c}^{1.5} + \beta_{V,c}^{1.5} \leq 1.0 \end{split}$$

Concrete Reinforced (\varnothing 10/75 mm):

$$\beta_{N,c,re} = \frac{N_{Ed}}{\psi_{N,c,re_{1}} \times C_{re,N} \times 11.1 \text{ kN}} \le 1.0;$$

$$\beta_{V,c,re} = \frac{V_{Ed}}{\psi_{V,c,re_{1}} \times C_{re,V} \times 11.1 \text{ kN}} \le 1.0 \qquad \beta_{N,c,re}^{-1} + \beta_{V,c,re}^{-1} \le 1.0$$

Example for Ordering a JORDAHL[®] Anchor Channel:

Туре	Size	Length	# /	Anchors	Material	ETA	Compliant
JTA W	40/22	- 150	-	2A	HDG	-	CE

Load Configuration ³⁾				Ste	Steel*		
For Top-Slab and Front-Face Concrete = C 30 / 37 Member Thickness = 1000 mm	Part Number	Channel Length	Min. Load Distance	Strength-Factors			
Edge Distance c₁ = 150 mm Resistance Given per Load Point				Pull-out S _N	Shear S _V		
Single Load	JTA W 40/22-150-2A	150 mm		1.00	1.00		
2A	JTA W 40/22-200-2A	200 mm		1.00	1.00		
V.N.	JTA W 40/22-250-2A	250 mm	none	1.00	1.00		
Ed IVEd	JTA W 40/22-300-2A	300 mm]	1.00	1.00		
Pair Load	JTA W 40/22-150-2A	150 mm		1.00	1.00		
2A	JTA W 40/22-200-2A	200 mm	100 mm	0.88	0.88		
	JTA W 40/22-250-2A	250 mm	100 mm	0.80	0.80		
V _{Ed} N _{Ed}	JTA W 40/22-300-2A	300 mm		0.74	0.74		
Pair Load	JTA W 40/22-250-3A	250 mm		1.00	1.00		
JA IC1	JTA W 40/22-300-3A	300 mm	100 mm	1.00	1.00		
	JTA W 40/22-350-3A	350 mm	100 mm	0.93	0.93		
V _{Ed} N _{Ed}	JTA W 40/22-450-3A	450 mm		0.80	0.80		
Continuous Load	JTA W 40/22-550-3A	550 mm	250 mm	0.93	0.93		
V _{Ed} N _{Ed}	JTA W 40/22-6000-25A	6000–6050 mm	250 mm	0.97	0.97		

Minimum of steel or concrete resistance governs.

JC Bolts

T-Bolt Selection Chart

For stainless steel bolts see page 36/37.

Concrete**

Metric Thread	Type JC							
Size ∅ [mm]	M 10	M 12	M 12	M 16	M 16			
Strength Grade	4.6	4.6	8.8	4.6	8.8			
Tension Load N _{Rd} [kN]	11.6	16.9	44.9	31.4	83.7			
Shear Load V _{Rd} [kN]	8.4	12.1	27.0	22.6	50.2			

Minimum Bolt Length:

- Add clamping length l_k
 - *plus* bolt diameter d = \emptyset
 - plus profile lip f
 - *plus* 3 mm
- Select next larger length from the T-bolt selection chart

Bolt capacity may be limited by anchor channel capacity. Check combined loads using:

$$\beta_{\text{N,sc}} = \frac{\text{N}_{\text{Ed}}}{\text{N}_{\text{Rd}}} \le 1.0$$
$$\beta_{\text{V,sc}} = \frac{\text{V}_{\text{Ed}}}{\text{V}_{\text{Rd}}} \le 1.0$$

$$\beta_{\rm N,sc}^2 + \beta_{\rm V,sc}^2 \le 1.0$$

Example for Ordering a JORDAHL® Bolt Type JC:

Туре	Diameter	L	ength [mm]		Strength		Coating
JC	M 12	×	60	-	4.6	_	ZP

Notes on Anchor Channels

- Load values are design resistances. They are valid for mild and stainless steel. For permissible loads divide by 1.4 load safety factor.
- Concrete strength is C 30 / 37. Resistance of unreinforced concrete may be adjusted for values between C 20 / 25 and C 50 / 60 by multiplying concrete strength by the factor below:

 $\sqrt{\frac{f_{ck, cube project}}{37 \text{ N/mm}^2}}$

- Loads can be positioned anywhere on the channel. Allow for 25 mm distance from the bolt center to the end of the profile.
- Valid for uncracked concrete. For cracked concrete divide by 1.40.
- 5) Valid for uncracked concrete. For cracked concrete divide by 1.33.
- 6) When using rebar configuration according to CEN/TS 1992-4 shear resistance in cracked concrete can be improved up to the resistance of uncracked concrete.
- Rebar configuration based upon a conservative assessment. Project specific design may be able to save rebar content. For front face installation stirrups are recommended.
- The information given is intended to be used in conjunction with the design criteria of CEN/TS 1992-4 and factored loads according to EN 1990.
 Transmission of forces in the structure must be considered in the design.
- 9) Min. member thickness incl. 25 mm concrete cover over the anchor.
- * S_N, S_V: steel strength reduction factor for channel length and load spacing
- ** C_N, C_V: concrete strength correction factor for channel length and load configuration
- *** Cre,N, Cre,V: correction factor for channel length and load configuration in reinforced concrete

Unreinforced			Reinf	orced	Channel
Strength-	Factors ²⁾	Reinforced 7)	Strength-	Factors ²⁾	Length
Pull-out ⁴⁾ C _N	Shear ^{5) 6)} C _V	Concrete	Pull-out ⁴⁾ C _{re,N}	Shear ⁵⁾ C _{re,V}	
2.88	2.89	arnothing 10 / 75 mm	2.58	3.80	150 mm
2.99	2.96		2.68	4.02	200 mm
2.99	2.99	€ <u> </u>	2.72	4.07	250 mm
2.82	2.99		2.69	4.04	300 mm
1.55	1.50		1.39	2.08	150 mm
1.65	1.55	× C,	1.47	2.21	200 mm
1.70	1.58		1.52	2.28	250 mm
1.65	1.60		1.53	2.30	300 mm
1.61	1.53		1.44	2.09	250 mm
1.69	1.57	4 × C	1.51	2.09	300 mm
1.75	1.60		1.56	2.35	350 mm
1.70	1.58		1.53	2.29	450 mm
1.81	1.31		1.62	2.43	550 mm
1.85	1.17		1.66	2.49	6000 – 6050 mm

Concrete***

 $\mathbf{w}_{\mathsf{N},\mathsf{c}_1} = \psi_{\mathsf{V},\mathsf{c}_1} = 1$ for concrete member thickness & edge distance shown above. For other dimensions and top-slab application see page 26/27.

JORDAHL[®] Anchor Channels and T-Bolts JTA W 50/30

JTA K 28/15 – JD Bolts JTA K 38/17 – JH Bolts JTA W 40/22 – JC Bolts JTA W 50/30 – JB Bolts JTA W 53/34 – JB Bolts JTA W 55/42 – JB Bolts JTA W 72/48 – JA Bolts

Design Resistance:

$$N_{Rd} = V_{Rd} = 17.2 \text{ kN}^{-1/8}$$

The Following Partial Safety Factors are Included:

Steel: $\gamma_{Ms} = 1.8$

Concrete: $\gamma_{Mc} = 1.5$; Reinforcement: $\gamma_{Ms, re} = 1.15$ Use either interaction for unreinforced or reinforced concrete.

The Following Equations Must be Checked:

Steel:

$$\beta_{N,s} = \frac{N_{Ed}}{S_N \times 17.2 \text{ kN}} \le 1.0;$$

$$\beta_{V,s} = \frac{V_{Ed}}{S_V \times 17.2 \text{ kN}} \le 1.0 \qquad \beta_{N,s}^2 + \beta_{V,s}^2 \le 1.0$$

Concrete Unreinforced:

$$\begin{split} \beta_{N,c} &= \frac{N_{Ed}}{\psi_{N,c_1} \times C_N \times 17.2 \text{ kN}} \leq 1.0; \\ \beta_{V,c} &= \frac{V_{Ed}}{\psi_{V,c_1} \times C_V \times 17.2 \text{ kN}} \leq 1.0 \qquad \qquad \beta_{N,c}^{1.5} + \beta_{V,c}^{1.5} \leq 1.0 \end{split}$$

Concrete Reinforced ($\varnothing\, {\rm 10/75}$ mm):

N

$$\beta_{N,c,re} = \frac{N_{Ed}}{\Psi_{N,c,re_{1}} \times C_{re,N} \times 17.2 \text{ kN}} \le 1.0;$$

$$\beta_{V,c,re} = \frac{V_{Ed}}{\Psi_{V,c,re_{1}} \times C_{re,V} \times 17.2 \text{ kN}} \le 1.0 \qquad \beta_{N,c,re}^{-1} + \beta_{V,c,re}^{-1} \le 1.0$$

Example for Ordering a JORDAHL® Anchor Channel:

Туре	Size	Length	# /	Anchors	Material	ETA	Compliant
JTA W	50/30	- 150	-	2A	HDG	_	CE

Load Configuration ³⁾				Ste	eel*	
For Top-Slab and Front-Face Concrete = C 30/37 Member Thickness = 1000 mm	Part Number	Channel Length	Min Load Distance	Strength-Factors		
Edge Distance c ₁ = 150 mm Resistance Given per Load Point				Pull-out S _N	Shear S _v	
Single Load 2A	JTA W 50/30-150-2A	150 mm		1.00	1.00	
	JTA W 50/30-200-2A	200 mm		1.00	1.00	
	JTA W 50/30-250-2A	250 mm	none	1.00	1.00	
V _{Ed} N _{Ed}	JTA W 50/30-300-2A	300 mm		1.00	1.00	
Pair Load	JTA W 50/30-150-2A	150 mm		1.00	1.00	
2A C ₁	JTA W 50/30-200-2A	200 mm	100 mm	0.89	0.89	
	JTA W 50/30-250-2A	250 mm	100 mm	0.81	0.81	
	JTA W 50/30-300-2A	300 mm		0.75	0.75	
Pair Load	JTA W 50/30-300-3A	300 mm		1.00	1.00	
JA SA	JTA W 50/30-350-3A	350 mm	100 mm	0.95	0.95	
V _{Ed} N _{Ed}	JTA W 50/30-450-3A	450 mm		0.82	0.82	
Continuous Load	JTA W 50/30-550-3A	550 mm	250 mm	0.92	0.92	
V _{Ed} N _{Ed}	JTA W 50/30-6000-25A	6000–6050 mm	250 mm	0.96	0.96	

Minimum of steel or concrete resistance governs.

JB Bolts

T-Bolt Selection Chart

Minimum Bolt Length:

- Add clamping length l_k
 - *plus* bolt diameter $d = \emptyset$
- *plus* profile lip f
- *plus* 3 mm
- Select next larger length from the T-bolt selection chart

Bolt capacity may be limited by anchor channel capacity. Check combined loads using:

$$\beta_{\text{N,sc}} = \frac{\text{N}_{\text{Ed}}}{\text{N}_{\text{Rd}}} \le 1.0$$
$$\beta_{\text{V,sc}} = \frac{\text{V}_{\text{Ed}}}{\text{V}_{\text{Rd}}} \le 1.0$$

$$\beta_{N.sc}^{2} + \beta_{V.sc}^{2} \le 1.0$$

For stainless steel bolts see page 36/37.

Metric Thread	Туре ЈВ									
Size∅[mm]	M 10	M 12	M 12	M 16	M 16	M 20	M 20			
Strength Grade	4.6	4.6	8.8	4.6	8.8	4.6	8.8			
Tension Load N _{Rd} [kN]	11.6	16.9	44.9	31.4	83.7	49.0	130.7			
Shear Load V _{Rd} [kN]	8.4	12.1	27.0	22.6	50.2	35.3	78.4			

Example for Ordering a JORDAHL[®] Bolt Type JB:

Туре	Diameter	Le	ength [mm]	S	trength		Coating
IB	M 12	×	50	_	4.6	_	ZP

Concrete**		Conci				
Unrein	forced		Reinfo	orced	Channel	
Strength-	Factors ²⁾	Reinforced 7)	Strength-	Factors ²⁾	Length	
Pull-out ⁴⁾ C _N	Shear ^{5) 6)} C _V	Concrete	Pull-out ⁴⁾ C _{re,N}	Shear ⁵⁾ C _{re,V}		
2.30	2.18	Ø 10/75 mm	2.23	2.46	150 mm	
2.39	2.23		2.31	3.04	200 mm	
2.43	2.26		2.36	3.04	250 mm	
2.44	2.27		2.36	3.52	300 mm	
1.22	1.13		1.18	1.77	150 mm	
1.29	1.16	ت ب	1.25	1.88	200 mm	
1.34	1.19		1.30	1.95	250 mm	
1.36	1.21		1.32	1.97	300 mm	
1.32	1.18		1.24	1.35	300 mm	
1.37	1.20		1.33	1.99	350 mm	
1.36	1.20	1.4 ×	1.32	1.98	450 mm	
1.32	0.98		1.28	1.92	550 mm	
1.35	0.86		1.31	1.96	6000 – 6050 mm	

 $\Psi_{N,c_1} = \psi_{V,c_1} = 1$ for concrete member thickness & edge distance shown above. For other dimensions and top-slab application see page 26/27.

Notes on Anchor Channels

- Load values are design resistances. They are valid for mild and stainless steel. For permissible loads divide by 1.4 load safety factor.
- Concrete strength is C 30 / 37. Resistance of unreinforced concrete may be adjusted for values between C 20 / 25 and C 50 / 60 by multiplying concrete strength by the factor below:

- Loads can be positioned anywhere on the channel. Allow for 25 mm distance from the bolt center to the end of the profile.
- Valid for uncracked concrete. For cracked concrete divide by 1.40.
- 5) Valid for uncracked concrete. For cracked concrete divide by 1.33.
- 6) When using rebar configuration according to CEN/TS 1992-4 shear resistance in cracked concrete can be improved up to the resistance of uncracked concrete.
- Rebar configuration based upon a conservative assessment. Project specific design may be able to save rebar content. For front face installation stirrups are recommended.
- The information given is intended to be used in conjunction with the design criteria of CEN/TS 1992-4 and factored loads according to EN 1990.
 Transmission of forces in the structure must be considered in the design.
- 9) Min. member thickness incl. 25 mm concrete cover over the anchor.
- * S_N, S_V: steel strength reduction factor for channel length and load spacing
- ** C_N, C_V: concrete strength correction factor for channel length and load configuration
- *** Cre,N, Cre,V: correction factor for channel length and load configuration in reinforced concrete

JORDAHL[®] Anchor Channels and T-Bolts JTA W 53/34

JTA K 28/15 – JD Bolts JTA K 38/17 – JH Bolts JTA W 40/22 – JC Bolts JTA W 50/30 – JB Bolts JTA W 53/34 – JB Bolts JTA W 55/42 – JB Bolts JTA W 72/48 – JA Bolts

Design Resistance:

$$N_{Rd} = V_{Rd} = 30.6 \text{ kN}^{-1/8}$$

The Following Partial Safety Factors are Included: Steel: γ_{Ms} = 1.8

Concrete: $\gamma_{Mc} = 1.5$; Reinforcement: $\gamma_{Ms, re} = 1.15$ Use either interaction for unreinforced or reinforced concrete.

The Following Equations Must be Checked:

Steel:

$$\beta_{N,s} = \frac{N_{Ed}}{S_N \times 30.6 \text{ kN}} \le 1.0;$$

 $\beta_{V,s} = \frac{V_{Ed}}{S_V \times 30.6 \text{ kN}} \le 1.0$ $\beta_{N,s}^2 + \beta_{V,s}^2 \le 1.0$

$$\beta_{N,c} = \frac{N_{Ed}}{\psi_{N,c_1} \times C_N \times 30.6 \text{ kN}} \le 1.0;$$

$$\beta_{V,c} = \frac{V_{Ed}}{\psi_{V,c_1} \times C_V \times 30.6 \text{ kN}} \le 1.0 \qquad \beta_{N,c}^{1.5} + \beta_{V,c}^{1.5} \le 1.0$$

Concrete Reinforced (\varnothing 10/75 mm):

$$\beta_{N,c,re} = \frac{N_{Ed}}{\psi_{N,c,re_{1}} \times C_{re,N} \times 30.6 \text{ kN}} \le 1.0;$$

$$\beta_{V,c,re} = \frac{V_{Ed}}{\psi_{V,c,re_{1}} \times C_{re,V} \times 30.6 \text{ kN}} \le 1.0 \qquad \beta_{N,c,re}^{-1} + \beta_{V,c,re}^{-1} \le 1.0$$

Example for Ordering a JORDAHL® Anchor Channel:

Туре	Size	Length	# #	nchors	Material	ETA (Compliant	
JTA W	53/34	- 150	-	2A	HDG	-	CE	

Load Configuration ³⁾				Ste	eel*	
For Top-Slab and Front-Face Concrete = C 30 / 37 Member Thickness = 1000 mm	Part Number	Channel Length	Min. Load Distance	Strength-Factors		
Edge Distance c₁ = 150 mm Resistance Given per Load Point		, , , , , , , , , , , , , , , , , , ,		Pull-out S _N	Shear S _v	
Single Load	JTA W 53/34-150-2A	150 mm		1.00	1.00	
2A C1	JTA W 53/34-200-2A	200 mm	none	1.00	1.00	
	JTA W 53/34-250-2A	250 mm	none	1.00	1.00	
V _{Ed} N _{Ed}	JTA W 53/34-300-2A	300 mm	300 mm		1.00	
Pair Load	JTA W 53/34-200-2A	200 mm		1.00	1.00	
	JTA W 53/34-250-2A	250 mm	150 mm	0.94	0.94	
V _{Ed} N _{Ed}	JTA W 53/34-300-2A	300 mm		0.85	0.85	
Pair Load	JTA W 53/34-350-3A	350 mm		1.00	1.00	
JA A	JTA W 53/34-400-3A	400 mm	150 mm	1.00	1.00	
V _{Ed} N _{Ed}	JTA W 53/34-450-3A	450 mm		0.97	0.97	
Continuous Load	JTA W 53/34-550-3A	550 mm	240 mm	0.91	0.91	
V _{Ed} N _{Ed}	JTA W 53/34-6000-25A	6000–6050 mm	250 mm	0.96	0.96	

Minimum of steel or concrete resistance governs.

JB Bolts

T-Bolt Selection Chart

plus profile lip f

Minimum Bolt Length:

plus 3 mm

Add

plus

Select next larger length from the T-bolt selection chart

clamping length l_k

bolt diameter d = \emptyset

Bolt capacity may be limited by anchor channel capacity. Check combined loads using:

$$\beta_{\text{N,sc}} = \frac{N_{\text{Ed}}}{N_{\text{Rd}}} \le 1.0$$
$$\beta_{\text{V,sc}} = \frac{V_{\text{Ed}}}{V_{\text{Rd}}} \le 1.0$$

$$\beta_{N,sc}^{2} + \beta_{V,sc}^{2} \le 1.0$$

For stainless steel bolts see page 36/37.

Metric Thread		Туре ЈВ									
Size∅[mm]	M 10	M 12	M 12	M 16	M 16	M 20	M 20				
Strength Grade	4.6	4.6	8.8	4.6	8.8	4.6	8.8				
Tension Load N _{Rd} [kN]	11.6	16.9	44.9	31.4	83.7	49.0	130.7				
Shear Load V _{Rd} [kN]	8.4	12.1	27.0	22.6	50.2	35.3	78.4				

Example for Ordering a JORDAHL® Bolt Type JB:

Туре	Diameter	Ler	ngth [mm]	S	trength	C	oating
JB	M 16	×	60	_	4.6	_	ZP

Concrete**		Conc	Concrete***					
Unrein	forced		Reinfo	orced	Channel			
Strength-Factors ²⁾		Reinforced 7)	Strength-	Factors ²⁾	Length			
Pull-out ⁴⁾ C _N	Shear ^{5) 6)} C _V	Concrete	Pull-out ⁴⁾ C _{re,N}	Shear ⁵⁾ C _{re,V}				
2.47	1.21	\varnothing 10/75 mm	2.47	1.67	150 mm			
2.56	1.25		2.56	1.67	200 mm			
2.63	1.27		2.63	1.87	250 mm			
2.66	1.28		2.66	2.16	300 mm			
1.37	0.66		1.37	1.52	200 mm			
1.45	0.68	c1,	1.45	1.58	250 mm			
1.49	0.70		1.49	1.62	300 mm			
1.44	0.68		1.44	0.81	350 mm			
1.48	0.69		1.48	1.61	400 mm			
1.51	0.70		1.51	1.62	450 mm			
1.22	0.54	-1.4	1.22	1.25	550 mm			
1.26	0.48		1.26	1.11	6000–6050 mm			

• $\psi_{N,c_1} = \psi_{V,c_1} = 1$ for concrete member thickness & edge distance shown above. For other dimensions and top-slab application see page 26/27.

Notes on Anchor Channels

- Load values are design resistances. They are valid for mild and stainless steel. For permissible loads divide by 1.4 load safety factor.
- Concrete strength is C 30 / 37. Resistance of unreinforced concrete may be adjusted for values between C 20 / 25 and C 50 / 60 by multiplying concrete strength by the factor below:

 $\sqrt{\frac{f_{ck, cube project}}{37 \text{ N/mm}^2}}$

- Loads can be positioned anywhere on the channel. Allow for 25 mm distance from the bolt center to the end of the profile.
- Valid for uncracked concrete. For cracked concrete divide by 1.40.
- 5) Valid for uncracked concrete. For cracked concrete divide by 1.33.
- 6) When using rebar configuration according to CEN/TS 1992-4 shear resistance in cracked concrete can be improved up to the resistance of uncracked concrete.
- Rebar configuration based upon a conservative assessment. Project specific design may be able to save rebar content. For front face installation stirrups are recommended.
- The information given is intended to be used in conjunction with the design criteria of CEN/TS 1992-4 and factored loads according to EN 1990.
 Transmission of forces in the structure must be considered in the design.
- Min. member thickness incl. 25 mm concrete cover over the anchor.
- S_N, S_V: steel strength reduction factor for channel length and load spacing
- ** C_N, C_V: concrete strength correction factor for channel length and load configuration
- *** Cre,N, Cre,V: correction factor for channel length and load configuration in reinforced concrete

JORDAHL[®] Anchor Channels and T-Bolts JTA W 55/42

JTA K 28/15 – JD Bolts JTA K 38/17 – JH Bolts JTA W 40/22 – JC Bolts JTA W 50/30 – JB Bolts JTA W 53/34 – JB Bolts JTA W 55/42 – JB Bolts JTA W 72/48 – JA Bolts

Design Resistance:

$$N_{Rd} = V_{Rd} = 44.4 \text{ kN}^{(1)(8)}$$

The Following Partial Safety Factors are Included: Steel: γ_{Ms} = 1.8

Concrete: $\gamma_{Mc} = 1.5$; Reinforcement: $\gamma_{Ms, re} = 1.15$ Use either interaction for unreinforced or reinforced concrete.

The Following Equations Must be Checked:

Steel:

$$\beta_{N,s} = \frac{N_{Ed}}{S_N \times 44.4 \text{ kN}} \le 1.0;$$

$$\beta_{V,s} = \frac{V_{Ed}}{S_V \times 44.4 \text{ kN}} \le 1.0 \qquad \beta_{N,s}^2 + \beta_{V,s}^2 \le 1.0$$

Concrete Unreinforced:

N

$$\beta_{N,c,re} = \frac{N_{Ed}}{\psi_{N,c,re_{1}} \times C_{re,N} \times 44.4 \text{ kN}} \le 1.0;$$

$$\beta_{V,c,re} = \frac{V_{Ed}}{\psi_{V,c,re_{1}} \times C_{re,V} \times 44.4 \text{ kN}} \le 1.0 \qquad \beta_{N,c}^{1.5} + \beta_{V,c}^{1.5} \le 1.0$$

Concrete Reinforced (\varnothing 10/75 mm):

$$\begin{split} \beta_{N,s} &= \frac{V_{Ed}}{S_N \times 44.4 \text{ kN}} \leq 1.0; \\ \beta_{V,s} &= \frac{V_{Ed}}{S_V \times 44.4 \text{ kN}} \leq 1.0 \qquad \qquad \beta_{N,c,re}^{-1} + \beta_{V,c,re}^{-1} \leq 1.0 \end{split}$$

Example for Ordering a JORDAHL® Anchor Channel:

Туре	Size	Length	# A	nchors	Material	ETA C	ompliant	
JTA W	55/42	- 150	-	2A	HDG	-	CE	

Load Configuration ³⁾			Min. Load Distance	Ste	eel*
For Top-Slab and Front-Face Concrete = C 30/37 Member Thickness = 1000 mm	Part Number	Channel Length		Strength-Factors	
Edge Distance c ₁ = 150 mm Resistance Given per Load Point		9		Pull-out S _N	Shear S _v
Single Load	JTA W 55/42-150-2A	150 mm		1.00	1.00
	JTA W 55/42-200-2A	200 mm	none	1.00	1.00
	JTA W 55/42-250-2A	250 mm	none	1.00	1.00
V _{Ed} N _{Ed}	JTA W 55/42-300-2A 300 mm			1.00	1.00
Pair Load	JTA W 55/42-200-2A	200 mm		1.00	1.00
	JTA W 55/42-250-2A	250 mm	150 mm	0.94	0.94
V _{Ed} N _{Ed}	JTA W 55/42-300-2A	300 mm		0.86	0.86
Pair Load	JTA W 55/42-350-3A	350 mm		1.00	1.00
JA A A A A A A A A A A A A A A A A A A	JTA W 55/42-400-3A	400 mm	150 mm	1.00	1.00
V _{Ed} N _{Ed}	JTA W 55/42-450-3A	450 mm		0.98	0.98
Continuous Load	JTA W 55/42-600-3A	600 mm	265 mm	0.91	0.91
V _{Ed} N _{Ed}	JTA W 55/42-6000-21A	6000–6050 mm	300 mm	0.96	0.96

Minimum of steel or concrete resistance governs.

JB Bolts

T-Bolt Selection Chart

Metric Thread

Size \emptyset [mm]

Strength Grade

Tension Load

 $\phi N_n [kN]$

Shear Load

 ϕV_n [kN]

M 12 M 12 M 16

8.8

44.9

27.0

4.6

16.9

12.1

Type JB

M 20

4.6

49.0

35.3

M 20

8.8

130.7

78.4

M 24

4.6

70.6

50.7

M 16

8.8

83.7

50.2

4.6

31.4

22.6

Minimum Bolt Length:

- Add clamping length l_k
 - *plus* bolt diameter $d = \emptyset$
 - *plus* profile lip f
 - *plus* 3 mm
- Select next larger length from the T-bolt selection chart

Bolt capacity may be limited by anchor channel capacity. Check combined loads using:

$$\beta_{\text{N,sc}} = \frac{\text{N}_{\text{Ed}}}{\text{N}_{\text{Rd}}} \le 1.0$$
$$\beta_{\text{V,sc}} = \frac{\text{V}_{\text{Ed}}}{\text{V}_{\text{Rd}}} \le 1.0$$

$$\beta_{\rm N,sc}^{2} + \beta_{\rm V,sc}^{2} \le 1.0$$

Example for Ordering a JORDAHL[®] Bolt Type JB:

Туре	Diameter	Lengt	h [mm]	St	rength	0	Coating
JB	M 24	× 6	50 ·	_	4.6	_	HDG

Concre	ete**	Conc					
Unrein	forced		Reinfo	orced	Channel Length		
Strength-	Factors ²⁾	Reinforced 7)	Strength-	Factors ²⁾			
Pull-out ⁴⁾ C _N	Shear ^{5) 6)} C _V	Concrete	Pull-out ⁴⁾ C _{re,N}	Shear 5) C _{re,V}			
2.04	0.83	∅ 10 / 75 mm	2.04	1.12	150 mm		
2.12	0.86		2.12	1.12	200 mm		
2.17	0.88		2.17	1.25	250 mm		
2.20	0.89		2.20	1.44	300 mm		
1.13	0.45		1.13	1.04	200 mm		
1.19	0.47	C.	1.19	1.09	250 mm		
1.23	0.48		1.23	1.11	300 mm		
1.18	0.47		1.18	0.54	350 mm		
1.22	0.48		1.22	1.08	400 mm		
1.25	0.49		1.25	1.08	450 mm		
1.05	0.38	-1.4	1.05	0.89	600 mm		
1.16	0.39		1.16	0.90	6000 – 6050 mm		

 $\psi_{N,c_1} = \psi_{V,c_1} = 1$ for concrete member thickness & edge distance shown above. For other dimensions and top-slab application see page 26/27.

Notes on Anchor Channels

- Load values are design resistances. They are valid for mild and stainless steel. For permissible loads divide by 1.4 load safety factor.
- Concrete strength is C 30 / 37. Resistance of unreinforced concrete may be adjusted for values between C 20 / 25 and C 50 / 60 by multiplying concrete strength by the factor below:

 $\sqrt{\frac{f_{ck, cube project}}{37 \text{ N/mm}^2}}$

- Loads can be positioned anywhere on the channel. Allow for 25 mm distance from the bolt center to the end of the profile.
- Valid for uncracked concrete. For cracked concrete divide by 1.40.
- 5) Valid for uncracked concrete. For cracked concrete divide by 1.33.
- 6) When using rebar configuration according to CEN/TS 1992-4 shear resistance in cracked concrete can be improved up to the resistance of uncracked concrete.
- Rebar configuration based upon a conservative assessment. Project specific design may be able to save rebar content. For front face installation stirrups are recommended.
- The information given is intended to be used in conjunction with the design criteria of CEN/TS 1992-4 and factored loads according to EN 1990.
 Transmission of forces in the structure must be considered in the design.
- 9) Min. member thickness incl. 25 mm concrete cover over the anchor.
- * S_N, S_V: steel strength reduction factor for channel length and load spacing
- ** C_N, C_V: concrete strength correction factor for channel length and load configuration
- *** Cre,N, Cre,V: correction factor for channel length and load configuration in reinforced concrete

Guide to ETA compatible Design

JORDAHL[®] Anchor Channels and T-Bolts JTA W 72/48

JTA K 28/15 – JD Bolts JTA K 38/17 – JH Bolts JTA W 40/22 – JC Bolts JTA W 50/30 – JB Bolts JTA W 53/34 – JB Bolts JTA W 55/42 – JB Bolts JTA W 72/48 – JA Bolts

Design Resistance:

$$N_{Rd} = V_{Rd} = 55.6 \text{ kN}^{-1/8}$$

The Following Partial Safety Factors are Included: Steel: γ_{Ms} = 1.8

Concrete: $\gamma_{Mc} = 1.5$; Reinforcement: $\gamma_{Ms, re} = 1.15$ Use either interaction for unreinforced or reinforced concrete.

The Following Equations Must be Checked:

Steel:

$$\beta_{N,s} = \frac{N_{Ed}}{S_N \times 55.6 \text{ kN}} \le 1.0;$$

$$\beta_{V,s} = \frac{V_{Ed}}{S_N \times 55.6 \text{ kN}} \le 1.0$$

$$\beta_{N,s}^{2} + \beta_{V,s}^{2} \le 1.0$$

$$\beta_{N,c} = \frac{N_{Ed}}{\psi_{N,c_1} \times C_N \times 55.6 \text{ kN}} \le 1.0;$$

$$\beta_{V,c} = \frac{V_{Ed}}{\psi_{V,c_1} \times C_V \times 55.6 \text{ kN}} \le 1.0 \qquad \beta_{N,c}^{-1.5} + \beta_{V,c}^{-1.5} \le 1.0$$

Concrete Reinforced ($\varnothing\, {\rm 10/75}$ mm):

$$\beta_{N,c,re} = \frac{N_{Ed}}{\psi_{N,c,re_1} \times C_{re,N} \times 55.6 \text{ kN}} \le 1.0;$$

$$\beta_{V,c,re} = \frac{V_{Ed}}{\psi_{V,c,re_1} \times C_{re,V} \times 55.6 \text{ kN}} \le 1.0 \quad \beta_{N,c,re}^{-1} + \beta_{V,c,re}^{-1} \le 1.0$$

Example for Ordering a JORDAHL® Anchor Channel:

Туре	Size	Length #		nchors	Material	ETA C	ETA Compliant			
JTA W	72/48	- 150	-	2A	HDG	_	CE			

Load Configuration ³⁾				Ste	eel*
For Top-Slab and Front-Face Concrete = C30/37 Member Thickness = 1000 mm	Part Number	Channel Length	Min. Load Distance	Strength	n-Factors
Edge Distance c₁ = 150 mm Resistance Given per Load Point		, , , , , , , , , , , , , , , , , , ,		Pull-out S _N	Shear S _v
Single Load	JTA W 72/48-150-2A	150 mm		1.00	1.00
2A	JTA W 72/48-200-2A	200 mm	nono	1.00	1.00
	JTA W 72/48-250-2A	250 mm	none	1.00	1.00
V _{Ed} N _{Ed}	JTA W 72/48-300-2A	300 mm		1.00	1.00
Pair Load	JTA W 72/48-200-2A	200 mm		1.00	1.00
	JTA W 72/48-250-2A	250 mm	150 mm	0.94	0.94
V _{Ed} N _{Ed}	JTA W 72/48-300-2A	300 mm		0.87	0.87
Pair Load	JTA W 72/48-350-3A	350 mm		1.00	1.00
3A	JTA W 72/48-400-3A	400 mm	150 mm	1.00	1.00
V _{Ed} N _{Ed}	JTA W 72/48-450-3A	450 mm		0.99	0.99
Continuous Load	JTA W 72/48-600-3A	600 mm	265 mm	0.91	0.91
V _{Ed} N _{Ed}	JTA W 72/48-6000-16A	6000 – 6050 mm	400 mm	0.98	0.98

Minimum of steel or concrete resistance governs.

JA Bolts

T-Bolt Selection Chart

For stainless steel bolts see page 36/37.

Metric Thread	Туре ЈА										
Size ∅ [mm]	M 20	M 20	M 24	M 24	M 27	M 30					
Strength Grade	4.6	8.8	4.6	8.8	4.6	4.6					
Tension Load N _{Rd} [kN]	49.0	130.7	70.6	188.3	91.8	112.2					
Shear Load V _{Rd} [kN]	35.3	78.4	50.7	113.0	66.0	80.6					

Minimum Bolt Length:

- Add clamping length l_k
 - *plus* bolt diameter $d = \emptyset$
 - *plus* profile lip f
 - *plus* 3 mm
- Select next larger length from the T-bolt selection chart

Bolt capacity may be limited by anchor channel capacity. Check combined loads using:

$$\beta_{N,sc} = \frac{N_{Ed}}{N_{Rd}} \le 1.0$$
$$\beta_{V,sc} = \frac{V_{Ed}}{V_{pd}} \le 1.0$$

$$\beta_{N,sc}^2 + \beta_{V,sc}^2 \le 1.0$$

Example for Ordering a JORDAHL[®] Bolt Type JA:

Туре	Diameter	L	ength [mm]		Strength		Coating
JA	M 24	×	75	_	4.6	-	HDG

Concre	ete**	Conc			
Unrein	forced		Reinfo	orced	Channel
Strength-	Factors ²⁾	Reinforced 7)	Strength-	Factors ²⁾	Length
Pull-out ⁴⁾ C _N	Shear ^{5) 6)} C _V	Concrete	Pull-out ⁴⁾ C _{re,N}	Shear ⁵⁾ C _{re,V}	
1.69	0.76	Ø 10/75 mm	1.69	0.88	150 mm
1.76	0.78		1.76	0.88	200 mm
1.81	0.80		1.81	0.98	250 mm
1.84	0.81		1.84	1.15	300 mm
0.93	0.41		0.93	0.88	200 mm
0.99	0.43	ت ×	0.99	0.92	250 mm
1.02	0.44		1.02	1.00	300 mm
0.98	0.42		0.98	0.42	350 mm
1.01	0.43		1.01	0.85	400 mm
1.04	0.44	4 × c1	1.04	0.85	450 mm
0.87	0.34		0.87	0.79	600 mm
1.21	0.43		1.21	0.99	6000–6050 mm

 $\Psi_{N,c_1} = \psi_{V,c_1} = 1$ for concrete member thickness & edge distance shown above. For other dimensions and top-slab application see page 26/27.

Notes on Anchor Channels

- Load values are design resistances. They are valid for mild and stainless steel. For permissible loads divide by 1.4 load safety factor.
- Concrete strength is C 30 / 37. Resistance of unreinforced concrete may be adjusted for values between C 20 / 25 and C 50 / 60 by multiplying concrete strength by the factor below:

- Loads can be positioned anywhere on the channel. Allow for 25 mm distance from the bolt center to the end of the profile.
- Valid for uncracked concrete. For cracked concrete divide by 1.40.
- Valid for uncracked concrete. For cracked concrete divide by 1.33.
- 6) When using rebar configuration according to CEN/TS 1992-4 shear resistance in cracked concrete can be improved up to the resistance of uncracked concrete.
- Rebar configuration based upon a conservative assessment. Project specific design may be able to save rebar content. For front face installation stirrups are recommended.
- The information given is intended to be used in conjunction with the design criteria of CEN/TS 1992-4 and factored loads according to EN 1990.
 Transmission of forces in the structure must be considered in the design.
- 9) Min. member thickness incl. 25 mm concrete cover over the anchor.
- * S_N, S_V: steel strength reduction factor for channel length and load spacing
- ** C_N, C_V: concrete strength correction factor for channel length and load configuration
- *** Cre,N, Cre,V: correction factor for channel length and load configuration in reinforced concrete

JORDAHL[®] Anchor Channels

Ψ Edge Factors

Considering Edge and Member Thickness

Ψ Edge Factors & Ψ Corner Factors

	Min. Edge Distance [mm]	Max. Allowable Factor ¹⁾ [mm]	Min. Member Thickness [mm]				
K 28/15	50	150	75 ³⁾ (× 0.75)				
K 38/17	50	200	100 ⁴⁾ (× 0.86)				
W 40/22	50	200	100 ⁴⁾ (× 0.86)				
W 50/30	75	200	100 ⁴⁾ (× 0.86)				
W 53/34	100	400	175				
W 55/42	150	400	200				
W 72/48	150	400	200				

Unreinforced Concrete 2)

N _{Ed}	Top Slab or Member Thickness h [mm]													
C1 VEd	12	25	17	75	200		2!	250		00	10	00		Load Configuration
Edge Distance c ₁ [mm]	$\overset{\textbf{Pull-Out}}{\psi_{N,c_1}}$	$\underset{\psi_{\text{V,c}_1}}{\text{Shear}}$	$\begin{array}{c} \textbf{Pull-Out} \\ \psi_{N,c_1} \end{array}$	$\underset{\psi_{\text{V,c}_1}}{\text{Shear}}$	$\overset{\textbf{Pull-Out}}{\psi_{N,c_1}}$	$\underset{\psi_{\text{V,c}_1}}{\text{Shear}}$	$\begin{array}{c} \textbf{Pull-Out} \\ \Psi_{N,c_1} \end{array}$	$\underset{\psi_{\text{V,c}_1}}{\text{Shear}}$	$\begin{array}{c} \textbf{Pull-Out} \\ \psi_{N,c_1} \end{array}$	$\underset{\Psi}{\overset{\textbf{Shear}}{\textbf{V},c_1}}$	$\overset{\textbf{Pull-Out}}{\psi_{N,c_1}}$	$\underset{\psi_{\text{V,c}_1}}{\text{Shear}}$		
50	0.58	0.19	0.58	0.21	0.58	0.21	0.58	0.21	0.58	0.21	0.58	0.21		
75	0.71	0.26	0.71	0.33	0.71	0.36	0.71	0.37	0.71	0.37	0.71	0.37	-	
100	0.82	0.34	0.82	0.42	0.82	0.46	0.82	0.53	0.82	0.56	0.82	0.56	oa	N _{Ed}
150	1.00	0.49	1.00	0.61	1.00	0.63	1.00	0.73	1.00	0.83	1.00	1.00	le l	
200	1.00	0.64	1.00	0.79	1.00	0.83	1.00	0.96	1.00	1.09	1.00	1.51	j ing	
300	1.00	0.64	1.22	1.13	1.22	1.20	1.22	1.39	1.22	1.57	1.22	2.74	, ,	
400	1.00	0.64	1.22	1.44	1.22	1.54	1.22	1.79	1.22	2.02	1.22	4.19		
50	0.58	0.20	0.58	0.23	0.58	0.23	0.58	0.23	0.58	0.23	0.58	0.23		N. 1
75	0.71	0.27	0.71	0.34	0.71	0.37	0.71	0.38	0.71	0.38	0.71	0.38		N _{Ed}
100	0.82	0.35	0.82	0.43	0.82	0.48	0.82	0.55	0.82	0.57	0.82	0.57	air	
150	1.00	0.49	1.00	0.61	1.00	0.63	1.00	0.73	1.00	0.83	1.00	1.00	Ъ	
200	1.07	0.63	1.07	0.78	1.07	0.82	1.07	0.95	1.07	1.07	1.07	1.49	Ĕ	IN Ed
300	1.07	0.63	1.32	1.09	1.32	1.16	1.32	1.34	1.32	1.52	1.32	2.65		
400	1.07	0.63	1.32	1.38	1.32	1.48	1.32	1.72	1.32	1.94	1.32	4.01		♥ Ed
50	0.58	0.35	0.58	0.39	0.58	0.39	0.58	0.39	0.58	0.39	0.58	0.39		
75	0.71	0.39	0.71	0.48	0.71	0.53	0.71	0.55	0.71	0.55	0.71	0.55	oad	N _{Ed}
100	0.82	0.45	0.82	0.54	0.82	0.59	0.82	0.68	0.82	0.71	0.82	0.71	S L	N _{Ed}
150	1.00	0.49	1.00	0.61	1.00	0.63	1.00	0.73	1.00	0.83	1.00	1.00	non	N _{Ed}
200	1.07	0.51	1.07	0.63	1.07	0.69	1.07	0.80	1.07	0.91	1.07	1.20	ţi.	
300	-	-	1.32	0.65	1.32	0.71	1.32	0.82	1.32	0.93	1.32	1.58	Ğ	
400	-	-	1.32	0.64	1.32	0.70	1.32	0.82	1.32	0.92	1.32	1.87	1	*Ed

Reinforced Concrete ²⁾

N _{Ed}					Top Slab	or Membe	per Thickness h [mm]							
C1 VEd	12	25	175		200		2	250		300		00	1	Load Configuration
Edge Distance c ₁ [mm]	$\begin{array}{c} \textbf{Pull-Out} \\ \Psi_{\text{N,c,re}_1} \end{array}$	$\begin{array}{c} \textbf{Shear} \\ \Psi \text{V,c,re}_1 \end{array}$	$\begin{array}{c} \textbf{Pull-Out} \\ \Psi_{\text{N,c,re}_1} \end{array}$	$\begin{array}{c} \textbf{Shear} \\ \Psi \text{V,c,re}_1 \end{array}$	$\begin{array}{c} \textbf{Pull-Out} \\ \Psi_{\text{N,c,re}_1} \end{array}$	$\begin{array}{c} \textbf{Shear} \\ \Psi \text{V,c,re}_1 \end{array}$	$\begin{array}{c} \textbf{Pull-Out} \\ \Psi_{\text{N,c,re}_1} \end{array}$	$\begin{array}{c} \textbf{Shear} \\ \Psi \text{V,c,re}_1 \end{array}$	$\begin{array}{c} \textbf{Pull-Out} \\ \Psi_{\text{N,c,re}_1} \end{array}$	$\begin{array}{c} \textbf{Shear} \\ \Psi \text{V,c,re}_1 \end{array}$	$\begin{array}{c} \textbf{Pull-Out} \\ \Psi_{\text{N,c,re}_1} \end{array}$	$\begin{array}{c} \textbf{Shear} \\ \Psi \text{V,c,re}_1 \end{array}$		
100	0.82	0.64	0.82	0.60	0.82	0.62	0.82	0.65	0.82	0.65	0.82	0.65		
150	1.00	0.84	1.00	0.86	1.00	0.85	1.00	0.92	1.00	0.96	1.00	1.00		N _{Ed}
200	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07		
300	1.07	1.07	1.22	1.74	1.22	1.90	1.22	2.11	1.22	2.22	1.22	2.31		1 V _{Ed}
400	1.07	1.07	1.22	2.16	1.22	2.36	1.22	2.73	1.22	2.91	1.22	2.91		
100	0.82	0.54	0.82	0.68	0.82	0.73	0.82	0.76	0.82	0.76	0.82	0.76		N N Ed
150	1.00	0.73	1.00	0.86	1.00	0.65	1.00	0.75	1.00	0.85	1.00	1.00		N _{Ed}
200	1.07	0.90	1.07	1.02	1.07	0.80	1.07	0.93	1.07	1.05	1.07	1.07		
300	1.07	0.90	1.32	1.04	1.32	1.02	1.32	1.10	1.32	1.16	1.32	1.21		N _{Ed}
400	1.07	0.90	1.32	1.04	1.32	1.02	1.32	1.10	1.32	1.16	1.32	1.21		
100	0.82	0.49	0.82	0.56	0.82	0.61	0.82	0.71	0.82	0.75	0.82	0.75		Ned
150	1.00	0.51	1.00	0.61	1.00	0.63	1.00	0.73	1.00	0.83	1.00	1.00		N _{Ed}
200	1.07	0.51	1.07	0.61	1.07	0.67	1.07	0.78	1.07	0.88	1.07	1.07		N _{Ed}
300	1.07	0.51	1.32	0.60	1.32	0.65	1.32	0.76	1.32	0.86	1.32	1.46		V _{Ed} V _{Ed}
400	1.07	0.51	1.32	0.57	1.32	0.63	1.32	0.73	1.32	0.82	1.32	1.67		V _{Ed}

¹⁾ Greatest edge distance up to which a factor may be selected for this channel.

E.g. JTA K 28/15 with 300 mm edge distance is limited to the 150 mm factor in the table.

²⁾ Values may be interpolated

 $^{3)}$ For use of 75 mm member thickness the tabulated factors ψ in the 125 mm column have to be reduced by a correction factor of 0.75.

 $^{\rm 4)}$ For use of 100 mm member thickness the tabulated factors ψ in the 125 mm column have to be reduced by a correction factor of 0.86.

Ψ Corner Factors

Considering Corner Influence and Member Thickness ⁵⁾

Unreinforced Concrete ²⁾

C ₂ N _{Ed}				Top Slab	Front Face or									
V _{Ed}	12	125 ³⁾ 175		20	200		250		00	10	00		Load Configuration	
Corner Distance c ₂ [mm]	$\overset{\textbf{Pull-Out}}{\psi_{N,c_2}}$	$\begin{array}{c} \textbf{Shear} \\ \psi_{\textbf{V},\textbf{c}_2} \end{array}$	$\begin{array}{c} \textbf{Pull-Out} \\ \psi_{\text{N,c}_2} \end{array}$	$\underset{\psi_{\text{V,c}_2}}{\text{Shear}}$	$\begin{array}{c} \textbf{Pull-Out} \\ \psi_{N,c_2} \end{array}$	$\underset{\psi_{\text{V,c}_2}}{\text{Shear}}$	$\begin{array}{c} \textbf{Pull-Out} \\ \psi_{N,c_2} \end{array}$	$\underset{\psi_{\text{V,c}_2}}{\text{Shear}}$	$\begin{array}{c} \textbf{Pull-Out} \\ \psi_{N,c_2} \end{array}$	$\underset{\psi_{\text{V,c}_2}}{\text{Shear}}$	$\overset{\textbf{Pull-Out}}{\psi_{N,c_2}}$	$\begin{array}{c} \textbf{Shear} \\ \psi_{\textbf{V},\textbf{c}_2} \end{array}$		
50	0.53	0.60	0.53	0.60	0.53	0.60	0.53	0.60	0.53	0.60	0.53	0.60		
75	0.61	0.61	0.61	0.61	0.61	0.61	0.61	0.61	0.61	0.61	0.61	0.61	-	
100	0.71	0.63	0.62	0.63	0.62	0.63	0.62	0.63	0.62	0.63	0.62	0.63	oa	N _{Ed}
150	0.87	0.66	0.76	0.65	0.75	0.64	0.75	0.64	0.75	0.64	0.75	0.64	le I	
200	1.00	0.67	0.88	0.66	0.86	0.65	0.86	0.65	0.86	0.65	0.86	0.65	ing	
300	1.00	0.67	1.00	0.68	1.00	0.67	1.00	0.67	1.00	0.67	1.00	0.67		
400	1.00	0.67	1.00	0.68	1.00	0.68	1.00	0.68	1.00	0.68	1.00	0.68]	
50	0.53	0.60	0.53	0.60	0.53	0.60	0.53	0.60	0.53	0.60	0.53	0.60		
75	0.61	0.61	0.61	0.61	0.61	0.61	0.61	0.61	0.61	0.61	0.61	0.61		N _{Ed}
100	0.71	0.63	0.62	0.63	0.61	0.63	0.61	0.63	0.61	0.63	0.61	0.63	air	
150	0.87	0.66	0.76	0.65	0.75	0.64	0.75	0.64	0.75	0.64	0.75	0.64	дЪ	
200	1.00	0.67	0.88	0.66	0.86	0.65	0.86	0.65	0.86	0.65	0.86	0.65	Ľ [INEd IN
300	1.00	0.67	1.00	0.68	1.00	0.67	1.00	0.67	1.00	0.67	1.00	0.67]	
400	1.00	0.67	1.00	0.68	1.00	0.68	1.00	0.68	1.00	0.68	1.00	0.68		• Ed
50	0.65	0.68	0.65	0.68	0.65	0.68	0.65	0.68	0.65	0.68	0.65	0.68		
75	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	oad	N _{Ed}
100	0.89	0.83	0.82	0.83	0.81	0.82	0.81	0.82	0.81	0.82	0.81	0.82	S L	
150	1.00	0.93	1.00	0.91	0.99	0.79	0.99	0.79	0.99	0.79	0.99	0.79	non	
200	1.00	1.00	1.00	1.00	1.00	0.78	1.00	0.78	1.00	0.78	1.00	0.78	ltin	V _{Ed}
300	1.00	1.00	1.00	1.00	1.00	0.85	1.00	0.85	1.00	0.85	1.00	0.85	Co I	
400	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		

Reinforced Concrete ²⁾

C ₂ N _{Ed}				Top Slab		Front Face or								
V _{Ed}	25	175		20	200		250		00	10	00	Load Configuration		
Corner Distance c ₂ [mm]	$\begin{array}{c} \textbf{Pull-Out} \\ \psi_{\text{N,c,re}_2} \end{array}$	$\begin{array}{c} \textbf{Shear} \\ \psi_{\text{V,c,re}_2} \end{array}$	$\begin{array}{c} \textbf{Pull-Out} \\ \Psi_{\text{N,c,re}_2} \end{array}$	$\begin{array}{c} \textbf{Shear} \\ \psi_{\text{V,c,re}_2} \end{array}$	$\begin{array}{c} \textbf{Pull-Out} \\ \Psi_{\text{N,c,re}_2} \end{array}$	$\begin{array}{c} \textbf{Shear} \\ \psi_{\text{V,c,re}_2} \end{array}$	$\begin{array}{c} \textbf{Pull-Out} \\ \Psi_{\text{N,c,re}_2} \end{array}$	$\begin{array}{c} \textbf{Shear} \\ \psi_{\text{V,c,re}_2} \end{array}$	$\begin{array}{c} \textbf{Pull-Out} \\ \psi_{\text{N,c,re}_2} \end{array}$	$\begin{array}{c} \textbf{Shear} \\ \psi_{\text{V,c,re}_2} \end{array}$	$\begin{array}{c} \textbf{Pull-Out} \\ \psi_{\text{N,c,re}_2} \end{array}$	$\begin{array}{c} \textbf{Shear} \\ \psi_{\text{V,c,re}_2} \end{array}$		
100	0.71	0.65	0.62	0.71	0.62	0.76	0.62	0.79	0.62	0.79	0.62	0.79		
150	0.87	0.66	0.76	0.75	0.75	0.81	0.75	0.90	0.75	0.90	0.75	0.89		Nei
200	1.00	0.67	0.88	0.72	0.86	0.76	0.86	0.84	0.86	0.91	0.86	0.93		- TEG
300	1.00	0.67	1.00	0.68	1.00	0.68	1.00	0.69	1.00	0.75	1.00	0.88		Ved
400	1.00	0.67	1.00	0.68	1.00	0.68	1.00	0.68	1.00	0.68	1.00	0.95		• EU
100	0.71	0.63	0.62	0.63	0.62	0.63	0.62	0.67	0.62	0.68	0.62	0.68		N N _{Ed}
150	0.87	0.66	0.76	0.66	0.75	0.64	0.75	0.64	0.75	0.64	0.75	0.65		Ned V
200	1.00	0.67	0.88	0.67	0.86	0.65	0.86	0.65	0.86	0.65	0.86	0.77		
300	1.00	0.67	1.00	1.00	1.00	0.68	1.00	0.73	1.00	0.79	1.00	1.00		I LED
400	1.00	0.67	1.00	1.00	1.00	0.84	1.00	0.91	1.00	0.98	1.00	1.00		
100	0.89	0.83	0.82	0.83	0.82	0.83	0.82	0.83	0.82	0.83	0.82	0.83		N _{Ed}
150	1.00	0.93	1.00	0.91	0.99	0.79	0.99	0.79	0.99	0.79	0.99	0.79		N _{Ed}
200	1.00	1.00	1.00	1.00	1.00	0.78	1.00	0.78	1.00	0.78	1.00	0.78		N _{Ed}
300	1.00	1.00	1.00	1.00	1.00	0.85	1.00	0.85	1.00	0.85	1.00	0.91		V _{Ed} V
400	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		V _{Ed}

⁵⁾ Valid for symetrical corners $c_1 = c_2$

JORDAHL[®] Anchor Channels

JORDAHL[®] Toothed Channels JXA and Toothed T-Bolts

metric thread sizes

The equations and interaction for steel and concrete or reinforced concrete have to be checked according to the corresponding JTA channel below.

Toothed Profile	Corresponding JTA Channel	For Factors S _N & S _V See Page
JXA W 29/20	JTA W 40/22	16-17
JXA W 38/23	JTA W 50/30	18-19
JXA W 53/34	JTA W 53/34	20-21

Check the following equations:

JORDAHL[®] anchor channels JXA should be used with toothed bolts for loading in all directions.

T Dol	t Strongthe		Bol	tØ	
I-DU	u Strengtils	M 10	M 12	M 16	M 20
Channol	W 29/20	Toothe JX	d Type D		
Profile	W 38/23		Toothe JX		
JAA	W 53/34			Toothe JX	ed Type (B
T-Bolt Strength	Tension Load N _{Rd} [kN]	30.9	44.9	83.7	130.7
Grade 8.8	Shear Load V _{Rd} = X _{Rd} [kN]	18.6	27.0	50.2	78.4

Example for Ordering a JORDAHL® Toothed Channel JXA and Toothed T-Bolt:

Туре	Size	Length [mm]	# Anchors	Material
JXA	W 38/23	6000 -	- 25A -	- HDG
Туре	Diameter	Length [mm]	Strength	Coating
JXH	M 16	× 80 -	- 8.8 -	HDG

Dynamic Load Capacity

Fatigue Resistance of JORDAHL® Anchor Channels

JORDAHL[®] hot rolled anchor channels have been tested under dynamic load and are fatigue rated according to European standard EC3. They may be used when cyclic loads are applied in addition to static loads. As long as the design steel resistance is not exceeded the range given in the diagram may be used to compare with the applied cyclic loads. The fatigue resistance is valid for all directions that can be used under static loading. A safety factor of 1.35 is already included in the diagram.

Calculation Example for Profile JTA W 50/30

Design Resistance: $N_{Rd} = 17.2 \text{ kN}$ Design tension load: $N_{Ed} = 12.0 \text{ kN}$ Fatigue load = Upper load – Lower load = 5.0 kN, 100 000 lifetime cycles expected Fatigue resistance from the diagram: 6.0 kN > 5.0 kN \rightarrow OK Total static + fatigue = 12.0 kN + 5.0 kN = 17.0 kN < 17.2 kN \rightarrow OK

Profile	Range at 2 000 000	÷
	cycles	
JTA W 40/22	2.0	
JXA W 29/20	2.0	
JTA W 50/30	2.4	
JXA W 38/23	3.0	
JTA W 53/34	5.5	
JXA W 53/34	6.0	
JTA W 55/42	7.0	ΔF
JTA W 72/48	7.0	

Design Life (load cycles) N

JORDAHL[®] Anchor Channels JORDAHL[®] Cold Formed Anchor Channels

The equations and interaction for steel and concrete or reinforced concrete have to be checked according to the corresponding JTA W channel below.

Profile	Corresponding JTA W Channel	For Factors S _N & S _V See Page
JTA K 40/25	JTA W 40/22	16 – 17
JTA K 50/30	JTA W 50/30	18 – 19
JTA K 53/34	JTA W 53/34	20 – 21
JTA K 72/48	JTA W 72/48	24 – 25

Example for Ordering a JORDAHL® Anchor Channel:

Туре	Size	Length	#	Anchors	Material	ETA	Complian
JTA K	40/25	- 150	-	2A	HDG	-	CE

JORDAHL[®] cold formed anchor channels are suitable for all applications without any requirements for fatigue strengths. They are often used in constructions where only static loads have to be connected to the structure or in temporary constructions with a limited service life.

The suiting T-bolts are the same as for the corresponding hot rolled profiles, while the torque values have to be limited in order to avoid harming the channel lips. We generally recommend using 4.6 grade JORDAHL® T-bolts together with JORDAHL® JTA K cold formed anchor channels. If high torques are required or changing loads are applied, we recommend to use hot rolled anchor channels.

Customized Solutions

JGB Anchor Channels with Welded Rebar

JGB W 50/30-200 anchor channel with custom anchor made from welded rebar

JORDAHL[®] Modified Solutions:

Short straight pieces with welded rebar anchors JGB:

- for profile K 38/17, W 40/22, W 50/30 and W 53/34
- strength and static design have to be determined individually.

Installation example for JGB W 50/30

small edge distances

Alternative types of anchors:

JRA with Double Anchors

Bent-Anchors

Corner Piece

JORDAHL[®] anchor channels JGB with rebar anchor provide high load capacity where adequate strength with standard anchors is not achievable. This can occur with high loaded connections in thin slabs, lightweight concrete, small edge-distances or a combination of these.

Installation example for JTA W 50/30-300-3A with additional welded rebar

Note:

JORDAHL[®] can fabricate almost any custom assembly of anchor channels. Please contact us for other combinations of anchor channels not shown here.

JORDAHL[®] Anchor Channels Customized Solutions

Curved Anchor Channels

For curved structures, supply shafts, treatment plants or tunnels, JORDAHL[®] can supply pre-curved anchor channels. The anchor channels can be curved in a concave direction (profile slot on the inside) or in a convex direction (profile slot on the outside). The maximum developed length of curved anchor channels is L = 5800 mm. Greater lengths and smaller bending radii than those specified in the table require additional effort and longer supply times.

 $\max. \ L \ [mm]$ $\ Profile \ slot \ on \ the \ outside$

Minimum Bending Radius												
Profile	W 72/48	W 55/42	W 53/34	W 50/30	W 40/22	K 38/17	K 28/15					
min R _i or R _a [mm]	3000	3000	2500	2000	1500	800	800					

Profile slot on the inside = R_i Profile slot on the outside = R_a

Curved anchor channels are used world wide to hold overhead electric lines in train tunnels.

Example for Ordering Curved Anchor Channels:

Туре	Profile	Stretch	ed Length [mm]	# A	nchor	Co	ating	Ben	ding Radius [m]
JTA	W 53/34	-	1050	-	6A	H	IDG		$R_i = 2.50$

Anchor Channel Pairs and Corner Pieces

Anchor Channel Pairs

Typical applications for anchor channel pairs are for connecting glass or metal facades. Curved pairs of anchor channels are frequently used for connecting overhead lines in tunnel structures. JORDAHL[®] anchor channel pairs are customized for each project. Rebar is used as a spacer.

Example for Ordering Anchor Channel Pairs:

Туре	Profile	Lei	ngth (mn	n]	# Anchor	Coating	Lateral Spacing of the Channels [mm]
JTA	W 53/34	-	400	_	ЗA	HDG	pair e = 250

Anchor Channel Corner Pieces

Anchor channel corner pieces are used for connecting curtain wall brackets in facades. In addition to the standard corner pieces, special designs can also be supplied on request.

Standard Corner Piece						
Profile JTA	Leg Length [mm]					
K 38/17	125 × 250 150 × 250 200 × 200					
K 50/30 W 50/30	250 × 250 300 × 300					
K 53/34 W 53/34	250 × 250 300 × 300					

Standard corner piece

Ordering Example of Anchor Channel Corner Piece:

Туре	Profile		Length [mm]		Material
JTA	K 38/17	_	125 × 250	-	A4

JORDAHL[®] Anchor Channels

Design Resistances of JORDAHL® T-Bolts in Mild Steel

JD Bolts JH Bolts JC Bolts JB Bolts JA Bolts

								Bolt Ø				
				M 6	M 8	M 10	M 12	M 16	M 20	M 24	M 27	M 30
		K 28/15		ŀ	lammer-he	ead Type JI)	-	Ĩ	-	-	-
		K 38/17		-	-	Hamm	Hammer-head Type		1 and	-	-	-
le		W 40/22		-	-	Ноо	k-head Typ	oe JC	-	1	-	-
ofi	JTA	W 50/30		-	-		Hook-hea	id Type JB		1	-	-
l Pr		W 53/34		-	-		Hook-hea	id Type JB		8	-	-
ne		W 55/42		-	-		Hook-hea	id Type JB	d Type JB		-	-
Char		W 72/48		-	-	-	-	-	-		Hook-head Type JA	
		W 29/20		-	-	Toothed	Type JXD	-	-	~	-	-
	JXA	W 38/23		-	-	-	Toothed	Type JXH	-	1	-	-
		W 53/34		-	-	-	-	Toothed	Type JXB	0	-	-
	1.6	Tension Load N _{Rd}	[kN]	4.0	7.3	11.6	16.9	31.4	49.0	70.6	91.8	112.2
ngth	4.0	Shear Load V _{Rd}	[kN]	2.9	5.3	8.4	12.1	22.6	35.3	50.7	66.0	80.6
t Stre		Tension Load N _{Rd}	[kN]	-	19.5	30.9	44.9	83.7	130.7	188.3	-	-
T-Bolt	8.8	Shear Load V _{Rd}	[kN]	-	11.7	18.6	27.0	50.2	78.4	113.0	-	-
		Shear Load X _{Rd}					See	page 28.				

All values are design resistances.

Check for tensile and shear:

$$\beta_{N,sc} = \frac{N_{Ed}}{N_{Rd}} \le 1.0; \ \beta_{V,sc} = \frac{V_{Ed}}{V_{Rd}} \le 1.0$$

Check combined loads using: 2 + 2 + 2 = 2

 $\beta_{N,sc}^{2} + \beta_{V,sc}^{2} \le 1.0$

Hexagon Nuts to ISO 4032, Zinc Plated ¹⁾							
	Thread	e [mm]	s [mm]	m [mm]			
	M 6	11.05	10.0	5.2			
4.5	M 8	14.38	13.0	6.8			
	M 10	18.90	16.0	8.4			
	M 12	21.10	18.0	10.8			
	M 16	26.75	24.0	14.8			
e	M 20	32.95	30.0	18.0			
	M 24	39.55	36.0	21.5			
	M 27	45.20	41.0	23.8			
	M 30	50.85	46.0	25.6			

¹⁾ For alternating loading we recommend self-locking nuts.

Notes:

Bolt capacity may be limited by anchor channel capacity. Values are design resistances. For permissible loads divide by 1.4 safety factor.

Washers ²⁾								
	Washer Zinc Plated	Dimen- sions	d [mm]	D [mm]	s [mm]			
		M 6	6.4	18.0	1.6			
	ISO 7093-1 (DIN 9021)	M 8	8.4	24.0	2.0			
0		M 10	10.5	30.0	2.5			
		M 12	13.0	37.0	3.0			
		M 16	17.0	50.0	3.0			
		M 20	22.0	60.0	4.0			
	ISO	M 6	6.4	12.0	1.6			
d		M 8	8.4	16.0	1.6			
		M 10	10.5	20.0	2.0			
s	7089 (DIN	M 12	13.0	24.0	2.5			
	125)	M 16	17.0	30.0	3.0			
I D I	- /	M 20	21.0	37.0	3.0			
		M 24	25.0	44.0	4.0			
	100	M 6	6.6	22.0	2.0			
	150	M 10	11.0	34.0	3.0			
$\left(\circ \right)$	(DIN	M 12	13.5	44.0	4.0			
	440)	M 16	17.5	56.0	5.0			
		M 20	22.0	72.0	6.0			

²⁾ Washers for stand-off installation see page 35.

Bolt Ø		M 6	M 8	M 10	M 12	M 16	M 20	M 24	M 27	M 30
Through-Hole in Attaching Part [mm]		7	9	12	14	18	22	26	30	33
Design Resistance Bending M _{Rd,s} [Nm]	4.6	3.8	9	17.9	31.4	79.8	155.4	268.9	398.7	538.7
M _{Ed}	8.8	9.8	24.0	47.8	83.8	213.1	415.4	718.4	1065.2	1439.4

Design Resistances of JORDAHL® T-Bolts due to Bending Moments

Stand-Off Installation

In the case of a stand-off installation, a connection can be stressed by a bending moment as well as by tension and shear forces. The following checks have to be fulfilled:

- 1. The bending moment $\rm M_{\rm Ed}$ is based on the outer edge of the profile and concrete.
- 2. Bending strength:

$$\beta_{V,sc} = \frac{M_{Ed}}{M_{Rd,s}^{\circ} \times (1 - \beta_{N,sc})}$$

3. Interaction check:

$$\beta_{\text{N,sc}}^2 + \beta_{\text{V,sc}}^2 \le 1.0$$

For $\beta_{\text{N,sc}}$ see page 34.

Dimensions of the Washers for Stand-Off Installation

Stand-Off Installation

Profile	Bolt Type	M 8	M 10	M 12	M 16	M 20	M 24	M 27	M 30
JTA K 28/15	JD	ISO 7093-1	ISO 7093-1	ISO 7089	-	-	-	-	-
JTA K 38/17	JH	-	38 × 38 × 5	ISO 7093-1	ISO 7093-1	-	-	-	-
JXA W 29/20	JXD	-	ISO 7093-1	ISO 7093-1	-	-	-	-	-
JTA W 40/22	JC	-	38 × 38 × 5	ISO 7093-1	ISO 7093-1	-	-	-	-
JTA K 40/25	JC	-	38 × 38 × 5	38 × 38 × 5	38 × 38 × 5	-	-	-	-
JZA K 41/22	JZS	-	-	38 × 38 × 5	38 × 38 × 5	-	-	-	-
JXA W 38/23	JXH	-	-	38 × 38 × 5	38 × 38 × 5	-	-	-	-
JTA W 50/30 JTA K 50/30	JB	-	50 × 50 × 6	50 × 50 × 6	50 × 50 × 6	50 × 50 × 6	-	-	-
JXA W 53/34	JXB	-	-	-	50 × 50 × 6	50 × 50 × 6	-	-	-
JTA W 53/34 JTA K 53/34	JB	-	50 × 50 × 6	50 × 50 × 6	50 × 50 × 6	50 × 50 × 6	-	-	-
JTA W 55/42	JB 3)	-	50 × 50 × 6	50 × 50 × 6	50 × 50 × 6	50 × 50 × 6	50 × 50 × 6	-	-
JTA W 72/48 JTA K 72/48	JA	-	_	_	_	70 × 70 × 8	70 × 70 × 8	70 × 70 × 8	70 × 70 × 8

³⁾ JB M 24 is equivalent to JE M 24.

JORDAHL[®] Anchor Channels

Design Resistances of JORDAHL® T-Bolts in Stainless Steel

JD Bolts JH Bolts JC Bolts JB Bolts JA Bolts

								Bolt Ø				
				M 6	M 8	M 10	M 12	M 16	M 20	M 24	M 27	M 30
		K 28/15		-	Hammer-h	ead Type JD	-	-	1	-	_	-
		K 38/17		-	-	Hamn	ner-head Ty	/pe JH	8	-	-	-
		W 40/22		-	-	Ноо	k-head Typ	e JC	-	Rend	-	-
ile	ΙΤΔ	W 50/30)	-	-		Hook-hea	id Type JB			-	-
rof		W 53/34		-	-		Hook-hea	id Type JB			-	-
l P		W 55/34		-	-		Hook-hea	id Type JB		0	-	-
าลททธ	W 72/48			-	-	-			-	Hook-head Type JA	-	-
Cŀ		W 29/20		-	-		Toothed Type JXD		-		-	-
	JXA	W 38/23		-	-		Toothed	Type JXH	-		-	-
		W 53/34		-	-			Toothed	Type JXB	0	-	-
	A.4. F.O.	Tension Load N _{Rd}	[kN]	-	-	10.1	14.8	27.4	42.8	61.7	-	-
ngth	A4-50	Shear Load V _{Rd}	[kN]	-	-	7.3	10.6	19.8	30.9	44.5	-	-
t Stre		Tension Load N _{Rd}	[kN]	-	13.7	21.7	31.6	58.8	91.7	-	-	-
T-Bol	A4-70	Shear Load V _{Rd}	[kN]	-	16.8	15.6	22.7	42.2	66.0	-	-	-
		Shear Load X _{Rd}			See page 28.							

All values are design resistances.

Check for tensile and shear:

$$\beta_{N,sc} = \frac{N_{Ed}}{N_{pd}} \le 1.0; \ \beta_{V,sc} = \frac{V_{Ed}}{V_{pd}} \le 1.0$$

Check combined loads using: $\beta_{N,sc}^{2} + \beta_{V,sc}^{2} \le 1.0$

Hexagon	Nuts to	ISO 4032	2, A4 1)	
	Thread	e [mm]	s [mm]	m [mm]
	M 6	11.05	10.0	5.2
~ S	M 8	14.38	13.0	6.8
	M 10	18.90	16.0	8.4
	M 12	21.10	18.0	10.8
	M 16	26.75	24.0	14.8
e	M 20	32.95	30.0	18.0
	M 24	39.55	36.0	21.5
	M 27	45.20	41.0	23.8
	M 30	50.85	46.0	25.6

¹⁾ For alternating loading we recommend self-locking nuts.

Notes:

Bolt capacity may be limited by anchor channel capacity. Values are design resistances. For permissible loads divide by 1.4 safety factor.

Washers ²⁾								
	Washer A4	Dimen- sions	d [mm]	D [mm]	s [mm]			
		M 6	6.4	18.0	1.6			
	ISO	M 8	8.4	24.0	2.0			
	7093-1	M 10	10.5	30.0	2.5			
(\bigcirc)	(DIN	M 12	13.0	37.0	3.0			
	9021)	M 16	17.0	50.0	3.0			
		M 20	22.0	60.0	4.0			
	ISO 7089	M 6	6.4	12.0	1.6			
		M 8	8.4	16.0	1.6			
, d ,		M 10	10.5	20.0	2.0			
		M 12	13.0	24.0	2.5			
s	125)	M 16	17.0	30.0	3.0			
	123)	M 20	21.0	37.0	3.0			
		M 24	25.0	44.0	4.0			
		M 6	6.6	22.0	2.0			
	150	M 10	11.0	34.0	3.0			
	7094 (DIN	M 12	13.5	44.0	4.0			
$\left(\circ \right)$	(DIN (AAO)	M 16	17.5	56.0	5.0			
	,	M 20	22.0	72.0	6.0			

²⁾ Washers for stand-off installation see page 37.

Design Resistances of JORDAHL® T-Bolts due to Bending Moments

Bolt Ø		M 8	M 10	M 12	M 16	M 20	M 24	M 27	M 30
Through-Hole in Attaching Part [mi	n]	9	12	14	18	22	26	30	33
Design Resistance Bending M _{Rd,s} [Nm]	A4-50	7.9	15.7	27.5	6.91	136.3	235.8	_	_
M _{Ed}	A4-50	16.8	33.5	58.8	149.4	291.3	503.7	-	-

Stand-Off Installation

In the case of a stand-off installation, a connection can be stressed by a bending moment as well as by tension and shear forces. The following checks have to be fulfilled:

- 1. The bending moment M_{Ed} is based on the outer edge of the profile and concrete.
- 2. Bending strength:

$$\beta_{\text{V,sc}} = \frac{\text{M}_{\text{Ed}}}{\text{M}_{\text{Rd,s}}^{\circ} \times \left(1 - \beta_{\text{N,sc}}\right)}$$

3. Interaction check:

$${\beta_{\text{N,sc}}}^2 + {\beta_{\text{V,sc}}}^2 \ \leq 1.0$$

For $\beta_{N,sc}$ see page 36.

Stand-Off Installation

Bolt Profile M 24 M 8 M 10 M 12 M 16 M 20 M 27 M 30 Туре ISO 7093-1 ISO 7093-1 JTA K 28/15 JD _ _ _ _ _ _ 38 × 38 × 5 ISO 7089 ISO 7089 JTA K 38/17 JH _ _ _ JXA W 29/20 JXD ISO 7089 _ _ _ _ _ 38 × 38 × 5 ISO 7089 ISO 7089 JTA W 40/22 JC _ _ _ _ _ JTA K 40/25 JC 38 × 38 × 5 38 × 38 × 5 38 × 38 × 5 JZA K 41/22 JZS 38 × 38 × 5 38 × 38 × 5 38 × 38 × 5 38 × 38 × 5 JXA W 38/23 JXH JTA W 50/30 JB _ _ _ _ JTA K 50/30 JTA W 53/34 JB JTA K 53/34 JTA W 55/42 JE 3) _ _ _ JTA W 72/48 70 × 70 × 8 JA _ _ _ _ _ _ _ JTA K 72/48

Dimensions of the Washers for Stand-Off Installation

³⁾ JE M 24 is equivalent to JB M 24.

JORDAHL[®] Anchor Channels

Prestressed Bolted Joints and Tightening Torque

Prestressing Forces of T-Bolts

In connection technology, for the applications

- Suspended direct and stand-off installation
- Stress in the channel longitudinal direction

it is important to prestress the bolted connections in order to prevent undesired loosening or slippage of the bolted connections. Higher-strength bolts (8.8) are not absolutely necessary for this purpose. Grade 4.6 and A4-50 bolts are also adequate if the following points are taking into consideration:

- In the short term, a force arising from prestressing with tightening torque is normally higher than the external load.
- The applied prestressing force is dissipated down to about 30% by relaxation.
- Bolts made of stainless steel exhibit higher friction than zincplated or HDG bolts. Therefore, stainless steel bolts produce lower prestressing forces.

- JORDAHL[®] bolts are supplied ready for installation. They should not be additionally oiled or treated with lubricants before the tightening torque is applied.
- The bolted joint may be prestressed only when there is steel to steel contact.

If the channel is set back behind the concrete surface, then the connection must be shimmed by means of a suitable washer (see page 34). If this is not followed and the attached part is prestressed against the concrete surface, it leads to residual stresses in the component. These can cause cracks or splitting of the concrete component.

Suspended Direct and Stand-Off Installation

For these applications, cold formed and hot rolled profiles can be used. In order to prestress a bolted joint with electro-galvanized (gv) bolts or stainless steel bolts, we recommend to use the tightening torques according to page 38.

The relationship between prestressing force and tightening torque can be seen from the graphs below. The prestressing forces vary strongly with the friction in the thread between the nut and the bolt. Low friction causes high pre-load, typical for hot-dip galvanized bolts with lubricated nuts. Friction is increased for clean galvanized (medium) and stainless steel (high) nuts and bolts. The recommended installation torque may be increased by 30% without danger of reaching the yield strength of the bolts.

Relationship between Prestressing Force and Installation Torque for:

JORDAHL[®] Anchor Channels

Recommended Tightening Torque Tinst

General

If the connecting plate is braced to the concrete or to the anchor channel respectively braced to concrete and anchor channel, the torque moments according to the following table shall be applied.

Steel-Steel-Contact

If the connecting plate is braced to the anchor channel by suitable washer, the torque moments according to the following table shall be applied. For bolts grade 8.8 and A4-70 higher torque moments may be applied.

	Bolt	Torque Moment T _{inst}					
Profile &	Diameter	General	Steel-Ste	el Contact			
T-Bolt Type	Ø	4.6 & 8.8	4.6	8.8			
	[mm]	[Nm]	[Nm]	[Nm]			
	M 6	-	3	-			
K 28/15	M 8	8	8	20			
JD	M 10	13	15	40			
	M 12	15	25	70			
14 20 /47	M 10	15	15	40			
К 38/17	M 12	25	25	70			
,,,,	M 16	40	65	180			
W/ (0/22	M 10	15	15	40			
W 40/22	M 12	25	25	70			
JC	M 16	45	65	180			
	M 10	15	15	40			
W 50/30	M 12	25	25	70			
JB	M 16	60	65	180			
	M 20	75	130	360			
	M 10	15	15	40			
W 53/34	M 12	25	25	70			
JB	M 16	60	65	180			
	M 20	120	130	360			
	M 10	15	15	40			
	M 12	25	25	70			
W 55/42	M 16	60	65	180			
۵۱	M 20	120	130	360			
	M 24	200	230	620			
	M 20	120	130	360			
W 72/48	M 24	200	230	620			
JA	M 27	300	340	900			
	M 30	380	460	1200			

Double Toothed T-Bolt

The Solution for Longitudinal Shear Loads

The heads of JORDAHL[®] double-notch toothed bolts JKB are equipped with 2 hardened teeth. The high strength grade 8.8 of the bolts allow high installation torque and consequently high pre-stress of the connecting parts. The two teeth on either side bite into the massive lips of the hot rolled profiles.

The mechanism works well for the double toothed bolts M20 and M16 in the profiles W 50/30, W 53/34 and W 40/22. The bite creates a mechanical interlock that guarantees full load capacity even after years of relaxation of the initial torque. The lips of the hot rolled channels receive irreversible plastic deformations, about 3 mm deep notches. Temporary application will leave marks behind. This does not affect the anchor channel performance or corrosion resistance.

Bolt type	Grade 8.8	Parallel Shear ¹⁾ X _{Rd} [kN]	Orthogonal Shear ¹⁾ V _{Rd} [kN]	Tensile Strength ¹⁾ N _{Rd} [kN]	Installation Torque T _{inst} [Nm]	Min. Con- necting Plate Thickness t [mm]	Suitable Profile Type JTA
JKB	M 20	10.5	78.4	130.7	400	8.0	W 53/34
JKB	M 16	7.0	50.2	78.4	200	6.0	W 50/30
ЈКС	M 16	7.0	50.2	78.4	200	6.0	W 40/22

Bolt capacity may be limited by anchor channel capacity. Check combined loads using:

¹⁾ Values are design resistances. For permissible loads divide by 1.4 load safety factor.

 $\beta_{\text{N,sc}} = \frac{N_{\text{Ed}}}{N_{\text{Rd}}} \le 1.0$ $\beta_{\text{V,sc}} = \frac{V_{\text{Ed}}}{V_{\text{Rd}}} \le 1.0$ $\beta_{\text{X,sc}} = \frac{X_{\text{Ed}}}{X_{\text{Rd}}} \le 1.0$

 $\beta_{X,sc}^{2} + \beta_{N,sc}^{2} + \beta_{V,sc}^{2} \le 1.0$

Example for Ordering a Double Toothed T-Bolt:

Туре	Diameter		Length [mm]		Coating
JKB	M 20	×	80	-	HDG

Available Lengths								
JKB	M 20 × 60 M 20 × 80 M 16 × 60							
JKC	M 16 × 40 M 16 × 60							

JORDAHL[®] Anchor Channels Mounting Channels JM

Plain Back Channels JM

The JM-series, as mounting channels, are distinguished by

- solid channel lips, large contact areas and high tightening torques
- right-angled profile edges and low residual stresses of hot rolled profiles for good weldability

Material

- carbon steel, mill finish
- hot dipped galvanized (HDG)
- stainless steel type 316 (A4)

Welded Channel Supporting Water Pipe

Toothed Channels JM, Cold Formed

JM W	Profile Weight	T-Bolts
	JM W 72/48	JA M 20–30
	8.85 kg/m	
	JM W 55/42	JB M 10-24
	6.57 kg/m	
4	JM W 53/34	JB M 10-20
$\begin{array}{c c} 34 \\ + & 22 \\ + & 11.5 \\ \hline & & 53 \\ \hline \end{array}$	4.96 kg/m	
2.75	JM W 50/30	JB M 10-20
$\begin{array}{c} 30 \\ + 22 \\ + \\ - \\ 50 \\ - \\ 50 \\ - \\ - \\ 50 \\ - \\ - \\ - \\ 50 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	3.25 kg/m	
2.5	JM W40/22	JC M 10-16
$\begin{array}{c} 1\\23\\ +\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\$	2.12 kg/m	

ЈМ К	Profile Weight	T-Bolts
3	JM K 38/17	JH M 10-16
	1.77 kg/m	
2.3	JM K 28/15	JD M 6-12
	1.08 kg/m	

JXM W	Profile Weight	Toothed T-Bolts
4 -++- 24 ++-22+-	JXM W 53/34	JXB M 16-20
	4.65 kg/m	
3	JXM W 38/23	JXH M 12–16
	2.42 kg/m	
	JXM W 29/20	JXD M 10-12
	1.55 kg/m	

		Cross Section Properties							Material	Strength
			y e e							
	Weight 1)	Area	Center of Gravity	Moments	of Inertia	Mome	nts of Resi	stance	Yield Strength	Tensile Strength
	G	A	e	ly	lz	Wy	Wz	W _{pl,y}	f _y	f _u
Profile	kg/m	[cm²]	[cm]	[cm ⁴]	[cm ⁴]	[cm³]	[cm ³]	[cm ³]	[N/mm ²]	[N/mm²]
				hot rolle	d channels	5				
JM W 72/48	8.84	11.27	2.40	34.97	83.27	14.28	23.13	18.28	235	390
JM W 55/42	6.76	8.61	2.21	18.75	36.27	8.49	13.31	11.72	275	420
JM W 53/34	4.98	6.34	1.74	9.33	23.70	5.35	9.03	7.18	235	360
JM W 50/30	3.23	4.12	1.60	5.19	13.89	3.24	5.67	4.34	235	360
JM W 40/22	2.10	2.68	1.22	1.97	5.87	1.62	2.97	2.15	250	380
				cold form	ed channe	ls				
JM K 38/17	1.81	2.30	1.05	0.85	4.29	0.82	2.26	1.24	260	360
JM K 28/15	1.11	1.42	0.89	0.41	1.47	0.46	1.05	0.68	235	360
	toothed channels									
JXM W 53/34	4.64	5.91	1.85	9.25	23.19	5.01	8.83	6.86	350	450
JXM W 38/23	2.42	3.08	1.33	2.10	6.13	1.57	3.23	2.30	350	450
JXM W 29/20	1.55	1.97	1.12	1.01	2.39	0.90	1.65	1.21	350	450

Weights, Cross Section Properties, Point Load Bearing Capacity of Mounting Channels:

¹⁾ All weights per m for mill finish steel. For galvanized profiles: weights per m × 1.10. For A4 profiles: weights per m × 1.02.

Clamping Plates

Clamping plates	Туре	h [mm]	Bolt	Design Resistance ²⁾ [kN]
	50/7 ¹⁾	7	M 12	$F_{Rd} = 5.25$
75(51) $60(50)$	60/10	10		
/5(51)	60/11	11		F 0.0
	60/12	12]	$F_{Rd_1} = 9.8$
19(12)	60/14	14	M 16	
h ¹ /10(12)	60/16	16	1	F - 15.8
'	60/18	18	1	$r_{Rd_2} = 15.0$
	60/20	20		
Clamping claw with adaptor	Туре	h [mm]	Bolt	Design Resistance ²⁾ [kN]
SKUA SKUS	SKU	5 - 40	M 12	F _{Rd} = 7

¹⁾ Dimension in brackets

²⁾ Values are design resistances. For permissible loads divide by 1.4 load safety factor.

JORDAHL[®] clamping plates HDG are suitable for connecting standard profiles.

JORDAHL[®] Anchor Channels for Corrugated Metal Siding & Roofs JTB

Anchor channels for corrugated metal siding & roofs permit fast, cost-effective installation on reinforced concrete components. The anchors on conventional connecting channels are often difficult to insert in the preformed rebar cages. The channels for corrugated metal sidings & roofs JTB-AR and JTB-UNI from JORDAHL® can be incorporated more easily in the existing reinforcement due to their thin anchor size.

Channels with inserted foam filling are placed into the smooth concrete surface of the load bearing component, flush with the surface and in the correct alignment. End joints between two connecting channels should be about 25 mm apart. Following the removal of the formwork, the corrugated metal siding & roofs are connected to the channel by selftapping screws or set screws. The siding must be connected in the middle third of the channel width.

The screw must be at least 25 mm from the end of the channel.

Material

Channels for corrugated metal siding & roofs from JORDAHL[®] are produced from steel according to EN 10 025, hot-dipped galvanized with \ge 50 µm zinc layer or from stainless steel 1.4571 or 1.4401/ 1.4404 (A4).

Application to a Wall

Storage of JTB-AR

Application to a Roof

JTB-UNI with the Lowest Possible Storage Space Requirement

Design Resistance F _{Rd} ¹⁾					
Profile	JTB 60	JTB 60/24/3)/22/6	Stress Ranges
Anchor spacing e [mm]	150	450	150	450	$\sqrt{F_{Ed, x}^{2} + F_{Ed, z}^{2} + F_{Ed, y}^{2}} \le F_{Rd}$
Single loads F_{Rd} [kN] F $c = e$ $Fc = e$ F	7	4	7	7	≥ 150 or 450
c = e/2 $F F F F F F$ $e - e - e - e - e$	3.5	3.5	3.5	3.5	e = 150 or 450
Line loads q [kN/m] q ee	46.6	15.5	46.6	15.5	

The minimum edge distance is 100 mm.

The minimum lateral spacing between channels is 200 mm.

Technical Data				
	JTB 60/24/3-AR	JTB 60/24/3-UNI		
	Installation height 100 mm	68 mm 68 mm		
Profile (w/h/d) [mm]	JTB 60/24/3			
Anchor Spacing e [cm]	15	45		
Cross Section A [cm ²]	2.	97		
Moment of Inertia l _y [cm ⁴]	1.	51		
Moments of Resistance W _y [cm ³]	0.87			
Weight with Anchors [kg/m]	2.5	2.4		
Embedment Depth [cm]	10	6.8		
Effective Embed- ment Depth [cm]	6 6			

Example for Ordering a Anchor Channel for Corrugated Metal Siding:

Туре	Size	Anchor	A	nchor spacing [n	ım]	Material
JTB	60/24/3	< UNI	-	450	_	- A4

¹⁾ Values are design resistances. For permissible loads divide by 1.4 load safety factor.

Forms Supplied

The profiled metal sheet fixing channels JTB-AR and JTB-UNI are supplied in two standard options (stock length 3 m in each case)

 centrally divisible, allows cutting in half, therefore often particularly cost-effective anchor spacing e: 75 mm; 3 × 450 mm; 1 × 150 mm; 3 × 450 mm; 75 mm = 3000 mm

75	450	450	450	150	450	450	450	75
		+				-	+	
Т		1						Т

 divisible as required, can be cut to suit, anchor spacing e: 150 mm

JORDAHL[®] Anchor Channels

Edge Spacing for JTB Channels

	Minimum Spacing Requirements [mm]						
	aa 1)	a _r 2)	a _e 3)	af 4)	d 5)	b 6)	
Type JTB-AR	200	100	25	25	100 +c	200	
Type JTB-UNI	200	125	25	25	75 + c	250	

- ¹⁾ If adjacent channels are staggered so that their anchors are separated by at last 250 mm, the lateral spacing a_a may be reduced to 75 mm.
- ²⁾ In the event that the permissible anchor force is not fully utilised, the edge spacing a_r in the case of exclusively central tensile loading may be reduced to:

reduced $a_r = N_{Ed}/N_{Rd} \times a_r \ge 5$ cm where N_{Ed} = factored anchoring force, N_{Rd} = design resistance.

- ³⁾ If the anchor force is fully utilised, the last anchor must be at least 87.5 mm away from the edge.
- ⁴⁾ If the anchor force is fully utilised, the two end anchors must have a mutual spacing of at least 150 mm.

- ⁵⁾ This is given by the geometry of the anchor and the required concrete cover c.
- ⁶⁾ Minimum component width when only one channel is provided.

Installation of a Multi-Layer Insulated Corrugated Metal Siding Wall

Corrosion Prevention

Category of Corrosion: ISO 12944-2	Profile	Anchor	Bolt, Nut, Washer	Intended Use
C1 harmless	mill finish	mill finish	mill finish without corrosion protection	Only possible when all the con- nection elements are protected, depending on the ambient conditions, by a minimum concrete cover according to Eurocode EC2.
C2 low	hot-dip galvanized (HDG), layer > 50 μm	hot-dip galvanized (HDG), layer > 50 μm	electro zinc plated (ZP) layer > 5 μm	Concrete components in interior rooms, for example dwellings, offices, schools, hospitals, retail premises – with the exception of wet rooms.
C3 medium	hot-dip galvanized (HDG), layer > 50 μm	hot-dip galvanized (HDG), layer > 50 µm	hot-dip galvanized (HDG), layer > 50 μm	Concrete components in interior rooms with normal atmospheric humidity (including kitchens, bathrooms and washrooms in dwellings) – with the exception of permanent moisture.
C4 high	stainless steel 1.4401/1.4404/ 1. 4571 (A4) 1.4362 (L4)	stainless steel 1.4401/1.4404/ 1.4571 (A4) ¹⁾ 1.4362 (L4) ¹⁾ weld-on anchor mill finish ²⁾	stainless steel 1.4401/1.4404/ 1.4571 (A4-50, A4-70) 1.4362 (L4-70)	Applications with medium corro- sion resistance, for example in wet rooms, exposed to weather, industrial atmosphere, close to the ocean and inaccessible areas.
C5 servere	Stainless steel stainless steel stainless steel 1.4462 (F4) ³⁾ 1.4529 (HC) 1.4529 (HC) 1.4547 (HC) weld-on anchor mill finish ²⁾		stainless steel 1.4462 (F4-70) ³⁾ 1.4529/ 1.4547 (HC-50, HC-70)	Applications with severe corrosion resistance and high corrosion loading by chlorides and sulphur dioxide (including concentration of the pollutants, for example in the case of components in saltwa- ter and road tunnels).

¹⁾ JORDAHL[®] stainless steel anchor channels with round anchors:

The anchor channel types JTA K 28/15 to W 50/30 are produced as standard with stainless steel round anchors. These anchor channels are not subject to any restriction with respect to the concrete cover.

The anchor channel types JTA W 72/48, K 72/48 and W 53/34, K 53/34 can be produced with stainless steel round anchors or welded-on mild steel I-anchors. The static and dynamic properties of the round anchors or welded I-anchors are the same as each other. ²⁾ JORDAHL[®] stainless steel anchor channels with mill finish weld-on anchors: The following concrete cover c must be used for the corrosion protection of the welded anchors.

W 53/34 K 53/34 [mm]	W 72/48 K 72/48 [mm]	
40	60	c C

³⁾ Description of F4 also applies to FA (1.4462)

JORDAHL[®] Anchor Channels **Planning**

Anchor channels should be planned early in the design phase and incorporated into the reinforcement design or formwork drawings with specification of type, length and position. Ideally, not only the current loads but also the load of future extensions are taken into account. There is a complete profile library available for CAD users.

The Planning Guidelines

The criteria for the installation are governed by the approval requirements. These define:

- Load bearing capacities
- Edge spacings
- Minimum dimensions of the components
- Area of application with regards to corrosion prevention
- Anchor channels permit extremely high loadings even close to the edge

Software Support by JORDAHL®

Planning software to support structural engineers

- Easy to use
- Intuitive operation and handling
- Quickly installed
- Immediate results
- Use as a verifiable calculation

Support from JORDAHL® Technical Engineers

- Object-based consultancy
- Cost efficient planning
- Setting up static verifications
- Development of special solutions

	1.			5	IC	ORDA	HL	sign	for JTA A	nchor Cha	nnel	
				9	1				City Toward		Pres	eni (143
Design	for JT/	Anc	hor Cl	nannel					Case 3, Plote 28	1.5		
Project. Pos. No.:	City Towers Case 3. Floo	r 28				Pret date	14-5ep-10	raction	(combined c	heck of tension an a Na h BM Na	dishear) Real-thair Bitti Real-thair	C Depresenter de la constante
Input Channel type: W\$000	14 Po	et kund 150 m	***	Channel length J No. of anchors. 300 mm / 2 ancho	*	Part No.: JTA W	A5-000-300	mmary maction-d	tiagram	2 1.00	age a	- OK
Terraiun load (H34) 10	M	amber thick: 200	iese (mm):	Concrete strengt C30/37	h.	Reinforce	ne ne	-			UNSAFE	
Shear load (MI):		tye distance 253	(med)	Comer		Crack cor	alitions	in a				
Schored foeth per point								1				
Design resis	tance N	Rd,s / VRd	. 17,23	2 17,22	[kN]			1 .		>		-
Strength fac Terrelem Sheet Sheet	Vinite [MN] 17.22 - Vinite [MN] 17.22 -	6.42 6.42 6.42 6.42	Managh and Manag PM 14,13 Varia PM 4,12	load position				atosta			-	
Tension Concrete Shear Concrete	17,22 · 17,22 · Nata (MN) 17,22 ·	CH CH	C. N. (M) 28,78 C. Y. (M) 21.45	1						j		
Concrete str	ength an	d geome	trical fact	Comer	concie				factored rate	mmai ahear Vit (MQ		
Tension Shuar	1,00 + 1,00 +	0.71 0.75	1.00 0.85	* 1.00 * 1.00 *	factor 0,71 0,64	1	Yhow Yhow	-	Al observation (1990) de over 17 traine anna (f, antorolana I na begi alcador a har	-	
Checks				-	OPVT	- 1940 - 4 3 200	and \$1A designed					
Yensian Bisari Shuari	N ₁₀ [kN] 10 V ₁₄ [kN]	- 68	Name [kN] 14,13 Vana [kN]		8x3 0,71 Pus	-11	Check ORI Check					
Tessatum Concorda Shinar Concorda	New (NMQ 10 /1 Ver (NMQ 8 /1	Yanat 9,71 - 7,844 -	Co. Note (4) 24,79 Co. V. (40) 21.45	() Main (MA))+ 17.50 ()+ Vall (MA))+ 13.03 ()+	fac 0.57 Fac E.00	st st	Check Check Check	fre Kahestisen schaft sinst			Variat	n JINGENG
Deutsche Kahneiser	ē					ATL YOURN	CEN-0.1.10					

Installation Efficient, Easy and Fast

JORDAHL[®] supplies anchor channels in all desired lengths. To avoid fresh concrete from flowing into the profile, JORDAHL[®] anchor channels are filled with either polystyrene (PS) or polyethylene (PE) foam. Both types can be removed easily.

Connecting

JORDAHL[®] anchor channels are installed according to the reinforcement/formwork drawings. To prevent displacement during concrete pouring, the channels are held in place:

- on wooden formwork by nails through the nail holes in the back of the profile, or by lateral bonding with hot melt adhesives
- on steel formwork by bonding with hot melt adhesives, or by bolting on with JORDAHL[®] T-bolts, or with magnets
- on the surface of a concrete slab by wiring the anchors to reinforcement bars or, if required, by means of special spacers spot welded to the anchors.

Concrete

Concrete is poured, raked and vibrated into the formwork – around the anchor channel concrete has to be compacted using appropriate means.

Removal of Foam Filler

After the removal of the formwork the foam filler can be easily removed by means of a hammer or other tools.

Mounting Connections

JORDAHL[®] T-bolts can now be inserted into the anchor channel slot at any desired point and, following 90° rotation, can be fixed by tightening with the appropriate torque. The slot on the bottom of the bolt must be transverse in relation to the channel direction.

JORDAHL® Anchor Channels

Safety of Design for Fastenings in Concrete – Based on CEN/TS 1992-4-3: Anchor Channels

With the European countries officially introducing the CEN/TS 1992-4-3 standard for anchor channels, a completely new developed design concept is now available to calculate the strength of anchor channels cast in concrete. This concept is based on the European partial safety design and the European Technical Approval for JORDAHL® anchor channels (ETA-09/0338). It generally leads to an improved utilisation of connections with JORDAHL® anchor channels and offers more flexibility in the design.

The following individual conditions can be taken into account for the design of JTA anchor channels:

- Edge Distance
- Length of channel
- Load positioning along the channel
- Concrete Strength
- Additional reinforcement
- Thickness of concrete member

The consideration of the above mentioned influences allow to tailor-made the design for the specific needs of each project. The key-benefit of this design concept is to reach the optimum of economic and technical efficiency.

In order to keep the effort of the design as small as possible JORDAHL[®] has carried out thousands of calculations. Taking all theoretical failure modes into account the results have been summarized into 2 sets of influences: load configuration and geometry for steel and concrete. With the knowledge of the corresponding strength and reduction factors (see page 13 - 27) any static designer can do a hand calculation.

This state-of-the-art design for anchorage in concrete is now available as JTA-JORDAHL[®] anchor channel software.

THE EUROCODE DESIGN CONCEPT: F_{Ed} ≤ F_{Rd}

Today's building structures are usually designed according to the concept with partial safety factors.

The concept is published in the Eurocodes (EC) and was adopted by all national standardization organizations in Europe.

The design verification according to EC2 (concrete) or EC3 (steel) takes place on the design level.

The design method according to the Eurocode concept is as follows: The design loads F_{Ed} are loads factored with various partial factors depending on the load characteristic (e.g. dead or live load) and probability of simultaneous occurrence (load combinations).

The design loads are compared with the design resistance $F_{Rd} = F_{Rk}/\gamma_M$ where F_{Rk} is the characteristic resistance and γ_M is a specific partial factor for the material property (e.g. concrete $\gamma_{Mc} = 1.5$, rebar steel: $\gamma_{Ms,re} = 1.15$).

In general the proof according to this safety concept is stated as:

$$F_{Ed} \le F_{Rd} \text{ or } \frac{F_{Ed}}{F_{Rd}} \le 1$$

Both sides, load and resistance, require more effort from static designers than the simplified and more uneconomic permissible loads design, as you can see from the adjacent symbolic diagram. However, the procedure allows the designer to take different influences of load and material into account and achieve a more constant and reliable safety level.

With today's knowledge of potential failure modes it is possible to achieve an efficient and economic design. However, it is imperative that all data for such a detailed comparison is available.

Safety Factors in conjunction with CEN/TS 1992 - Eurocode 2

All design resistances published in this brochure are based on the partial safety concept and include the following partial safety factors:

		where to find in
Steel	Factor γ_M	CEN/TS 1992-4-1
Connection anchor and channel $\gamma_{M,ca}$	1.8	4.4.3.1.1
local flexure of channel lip $\gamma_{Ms,l}$	1.8	4.4.3.1.1
Supplementary reinforcement $\gamma_{Ms,re}$	1.15	4.4.3.1.1
Concrete, unreinforced		
Pull-out γ _{Mp}	1.5	4.4.3.1.3
Concrete cone failure γ_{Mc}	1.5	4.4.3.1.2
Concrete edge failure γ_{Mc}	1.5	4.4.3.1.2
Concrete, reinforced		
Tension: Anchorage failure	1.5	4.4.3.1.2
Shear: Anchorage failure	1.5	4.4.3.1.2
For partial load safety-factors and comb	pinations we	recommend

to use EN-1990 (Eurocode 0), Annex A

The resistances of JORDAHL[®] anchor channels published in this catalogue are based on today's knowledge of anchoring in concrete as stated in CEN/TS1992-4 and the European Technical Approval for JORDAHL[®] anchor channels. This Approval is based on numerous tests, statistical and numerical analysis and the Eurocode design concept.

- F_{Rk, i} = charateristic resistance for material
- $\gamma_{\text{M, i}} = \text{are the individual partial safety} \\ factors for material i$
- $\begin{aligned} F_{Rd} &= design \ resistance \\ F_{RD} &= min \ (F_{RD, \, 1}; F_{RD, \, 2}; F_{RD, \, i}) \\ F_{RD, \, i} &= F_{RK, \, i} / \gamma_{M, \, i} \end{aligned}$

$$F_{Ed}$$
 = design load

- $F_{Ed} = \gamma_G \times F_G + \gamma_Q \times F_Q$ = unfactored life load
- $\begin{array}{ll} {\sf F}_{\sf Q} & = {\sf unfactored \ life \ load} \\ {\sf Y}_{\sf Q} & = {\sf load \ safety \ factor \ for \ life \ load} \end{array}$
- F_{G} = unfactored dead load
- γ_0 = load factor for dead load

Disclaimer

The JORDAHL[®] anchor channel Guide to ETA compatible Design is a design aid intended for use by a qualified person or design team who takes full responsibility for the design of the structure. The connection resistances shown in this manual are based on tests performed according to CEN-TS 1992. The design method used in this manual is based on the partial safety concept. The design resistances in this guide must exceed the design loads determined by the structural engineer. The JORDAHL[®] anchor channel Installation Instructions must be followed on the jobsite to achieve the resistances shown in this guide.

info@jordahl.de www.jordahl.de